

OVERVIEW

- Data mining from the Dutch Oil & Gas portal: www.nlog.nl
- Results from data mining: reservoir properties of the Lower Volpriehausen Sandstone
 - Porosity-permeability relation
 - Porosity-depth relation (2 methods):
 - 1. Based on well data
 - 2. Based on grain density
 - Method repeatability and applicability

Conclusions

WWW.NLOG.NL THE ULTIMATE PUBLIC DOMAIN PLAYGROUND FOR GEOLOGICAL DATA MINING

Some examples:

- > 200.000 routine core measurements.
- Litho-stratigraphic subdivision for almost all wells.
- Reservoir properties from petrophysical analyses.
- Petrographical data and reports.
- Regional reports on the Dutch geology.
- > Etc...

Usage:

- Gather and evaluate large data sets.
- Revealing well-known reservoir property trends on regional to sub-regional scale.

Solid reference framework for local reservoir quality analysis

EXAMPLE: LOWER VOLPRIEHAUSEN SANDSTONE (RBMVL)

- Age: Scythian (252 247 Ma), Early Triassic
- Oldest member of the Main Buntsandstein Subgroup
- > Fine to medium grained, light-coloured arkosic sandstone.
- Often highly cemented base.
- Fluviatile sediments in the South, aeolian in the North.

(Geluk, 2005)

POROSITY - PERMEABILITY RELATION

Lower Volpriehausen Sandstone Member

- > 5000 core plugs from 75 Dutch wells.
- Coloured background shows contoured density of data points (with Isatis).
- Note the curved nature of the data cloud.
- Often exponential poro-perm relations on log-normal plot are used. These do not honour the data adequately.
- Better to use curved or bilinear relation on log-normal plot.

POROSITY - DEPTH RELATION

Lower Volpriehausen Sandstone Member

- Data collecting:
 - > 80 wells
 - ± 7000 porosity core measurements
- Exclusion of data:
 - Wells with restricted sample selection (<10 samples)</p>
 - Wells with restricted reservoir coverage (<25%)</p>
- Remaining data set:
 - > 59 wells
 -) ± 5500 core measurements

Thickness map of the Lower Volpriehausen Sandstone Member

DATA FOR ANALYSIS

- Data points show high degree of scatter.
- Variation in porosity due to facies differences and diagenesis.
- High porosity envelope visible, caused by burial of sediments.

Be aware: some data from wells in inverted basins present

 Conversion to maximum burial depth required.

BURIAL HISTORY STUDIES

- Maximum burial depth of core measurements determined using the maximum burial map on the right:
- Maximum burial map based on results of Nelskamp & Verwey (2012):
 - Maximum burial depth of the RBMVL calculated using basin modelling.
- Several studies on Dutch burial history:
 - Nelskamp & Verwey (2012)
 - Luijendijk et al. (2011)
 - > Van Dalfsen et al. (2005)

Maximum burial map of the Lower Volpriehausen Sandstone Member

PRESENT DEPTH TO MAXIMUM BURIAL DEPTH

Present day depth

Maximum burial depth

POROSITY – DEPTH RELATION

1. Based on well data

- Collecting well data:
 - Composite well logs, digital logs, core reports/descriptions, petrography/ sedimentology/petrophysics reports etc.
- Quick look petrophysical analysis:
 - Clay volume & porosity calculations
- Combine data to determine effects on porosity other than burial and assign attributes:
 - Diagenesis (mineral type)
 - Facies type (clay volume, grain size etc.)

POROSITY - DEPTH RELATION

1. Based on well data

- P10 P90 distributions, as well as average porosity of "reservoir quality" data plotted per well.
- Trend line through averages gives poro-depth relation for intervals with reservoir quality.
- Interesting how poro-depth relation develops with increasing clay volume and diagenesis.

POROSITY – DEPTH RELATION

2. Based on grain density

- Grain density (GD) is a good porosity indicator:
 - Clay often has higher GD than quartz.
 - Common pore cements have high GD like:
 - Dolomite: 2.85 g/cm³
 - Anhydrite: 2.98 g/cm³
 - Halite has low GD
- Poro-depth trend clear in GD range:
 2.625 2.675 g/cm³

Note: quartz cement is problematic for this analysis.

COMPARISON OF RESULTS

Similar porosity-depth trend derived from two different methods.

1. Based on well data

2. Based on grain density

POROSITY - DEPTH RELATION PER GD CLASS

Methodology

-) GD classes defined (colour scale).
- Upscaling: average porosity per 50m depth interval, for each GD class.
- Averages plotted versus mid of depth interval.

Results

- Gradual increase in porosity with decreasing GD.
- Decreasing porosity with depth visible in each class.
- But, slope of porosity-depth trend varies per class.

Method is repeatable for other lithological units

Hardegsen & Detfurth Sst. (Triassic)

Upper Slochteren Sst. (Permian)

Lower Slochteren Sst. (Permian)

EXAMPLE OF APPLICABILITY

- Resulting porosity-depth relations used for generation of regional property maps (porosity, permeability, etc.) of important reservoir units in the Netherlands.
- Maps are based on well data. Relations are used for the interpolation process.

Porosity map of the Lower Volpriehausen Sandstone Member

Permeability map of the Lower Volpriehausen Sandstone Member

CONCLUSIONS

- <u>Data mining</u> and analysis of large data sets support generally known trends and provide an excellent reference framework for more detailed reservoir property analyses.
- Porosity-permeability relations are often defined by straight lines. However, the data proves in most cases that the relation is better described by <u>curved functions</u> on a log-normal plot.
- Porosity-depth relations in core data are revealed when correcting for <u>maximum burial depth</u> and other factors like cementation and facies differences.
- Porosity-depth relations in core data can be defined per grain density class. A decrease in porosity reduction with depth, with increasing grain density, is shown in the data.

REFERENCES

- Geluk, M.C., 2005. Stratigraphy and tectonics of Permo-Triassic basins in the Netherlands and surrounding areas. PhD thesis, Utrecht University.
- Luijendijk, E., Van Balen, R., Ter Voorde, M. & Andriessen, P, 2011. Reconstructing the Late Cretaceous inversion of the Roer Valley Graben (southern Netherlands) using a new model that integrates burial and provenance history with fission track thermochronology. Journal of Geophysical Research 116: p. 1-19.
- Nelskamp, S. & Verweij, J.M., 2012. Using basin modeling for geothermal energy exploration in the Netherlands – an example from the West Netherlands Basin and Roer Valley Graben. TNO (Utrecht). Report number TNO-060-UT-2012-00245, 113 pp.
- Van Dalfsen, W., Mijnlieff, H. & Simmelink, E., 2005. Interval velocities of a Triassic claystone: Key to burial history and velocity modeling. EAGE 2005, poster presentation.

