Project overview

Sleipner CO₂ plume

TNO | Knowledge for business

Filip Neele, Rob Arts

E filip.neele@tno.nl, rob.arts@tno.nl
T +31 30 256 4859

Jan 14, 2010
Sleipner CO$_2$ injection

CO$_2$ injection commenced 1996
~ 1 Mt CO$_2$ injected per annum
> 11 Mt currently *in situ*

Time-lapse monitoring
1994 3D seismic baseline
1999 3D seismic
2001 3D seismic
2002 3D seismic
2004 3D seismic
2006 3D seismic
2008 3D seismic
[2D hi-res]
[Seabed gravity]
[CSEM]
[Seabed imaging]

Courtesy CO2STORE
Sleipner: the reservoir
Sleipner: Forward modelling
Detailed synthetic modeling of the seismic response

- Top reservoir
- Bottom reservoir
- Thickness of 127 m
- TWT of 123 ms
- Tuning effect at the top of the reservoir
- "Push-down" effect below the CO₂ accumulation

- Thickness CO₂ accumulation below the shale barriers (m)
- Amplitude (blue trough)

- Sand
- CO₂
- Shale

EBN-TNO amplitude conference

Jan 14, 2010
Aim
(EU CO₂ReMoVe)

- Study Sleipner CO₂ plume
 - Development through time
 - Focus on “undisturbed” top layer
 - Confirm properties of CO₂ filled Utsira reservoir

- Method
 - Shot gathers from Inline data (2D)
 - Common Focus Point (CFP)
 → AVP data
 - AVP data → rock physics
CFP work flow (1)

Shot gathers

Operators

DTS

CFP gathers

Grid point g

After Berkhout
Local characterization

Amplitude (p)

Reflectivity gather

τ - p transform

After Berkhout; Winthaegen
CFP work flow (2)

- Shot gathers
- Operators
- DTS
- CFP gathers
- Grid point g.

After Berkhout

Amplitude
Velocity
Time lapse CFP work flow

Baseline

Shot gathers

Operators

DTS

CFP gathers

Grid point g.

Cross focusing
(cross equalization: travel time, amplitude)

Saturation

Stress

Pore fluid

Amplitude

Velocity

Amplitude

Velocity

Shot gathers

Operators

DTS

CFP gathers

Grid point g.

After Winthaegen
Cross focusing: travel time

Redatum source and receivers (new acquisition level)

Baseline survey

Monitor survey

\[\approx (\Rightarrow \Delta t) \]

Use the same operator for the monitor survey and update (in case of changes)

Note: focusing includes regularization/interpolation at new datum level

After Winthaegen
Focusing: time correction

Operator \((A,t)\) for overburden

Differential time = 0

Reflectivity After Winthaegen
Cross equalization: time

Apply kinematic correction using the base line operator to the monitor data (and update)

Operator (A,t) for overburden

?? T_{Otl} = T_{Obl}

DTS

Reflectivity
Cross equalization: amplitude

\[A_{\text{Stl}} = 4A_{\text{Sbl}} \]

\[A_{\text{OtI}} = 0.5 A_{\text{Obl}} \]

Datum = 0

Changed reservoir \(\neq 0 \)

Reflectivity (AVP)
2008 data set

- CFP processing on top Utsira Fm
- Clear reflection in plume, weak reflection elsewhere
2008 data set
AVP Top Utsira

• AVP panel

• AVP curves
 • red: ‘left’ of plume
 • green: ‘in’ plume
 • blue: ‘right’ of plume

• Data contain interval (approx.)
 $4 \times 10^{-5} < p < 0.0003$
2008 data set
Synthetic AVP curves

- Plume zone higher amplitude
- Plume zone higher gradient
Plume AVP panels

- Plume imprint on data increases
- Consistent results for time lapse surveys
AVP curves

- Red: ‘left’ of plume
- Green: ‘in’ plume
- Blue: ‘right’ of plume

- Data contain interval (approx.)
 4e-5 < p < 0.0003

- Interference from shallower reflections
 - Restricts validity of results to interval 0<p<0.0002 (approx.)

- More far offsets in more recent data sets
Future work

- Interpretation in terms of rock physics
- Image and analyse deeper parts of the plume (next slide)
First reflections inside plume
AVP panels and curves
Sleipner surveys
Inline through plume