Hydrocarbons in the Netherlands
Diversity as the key to successful exploration

Tertiary
- Bright spots: indicator of shallow gas presence
- High production rates
- More information on the “Shallow Gas” poster

Upper Cretaceous – Chalk
- Bright spots: indicative of shallow gas presence
- High production rates
- More information on the “Shallow Gas” poster

Upper Cretaceous – Upper Chalk
- A proven, but underexplored play
- Most important oil reservoir (production since 2001 (F2-Hanze field))
- Challenging 3D seismic plays (e.g. Fieseum field (NL), Ford field (IR), Halfdan field (DK))
- Potential for intra-Chalk structural or stratigraphic traps
- > 55 untested closures in the northern Dutch offshore, of which > 30 in open acreage: 10-300 MMbbls each

Upper Cretaceous – Lower Chalk
- Potential for intra-Chalk structural or stratigraphic traps

Jurassic
- Significant oil and gas prospectivity
- Requiring dedicated geological studies

Triassic
- Volumetrically, the second largest gas play in the Netherlands (e.g. F15-A field)
- Significant hydrocarbon potential
- More information on the “Triassic Hydrocarbon Potential” poster

Rotliegend
- Volumetrically, the most important gas play in the Netherlands (e.g. Wealden gas field)
- Still active, new closures discovered and proven: Ruby and Lijflega plays
- More information on the “A New Upper Rotliegend Play” poster

Carboniferous

Upper Carboniferous
- The Westphalian coals are the principal source rock for gas and are present in most of the Dutch subsurface

Lower Carboniferous
- Virtually untested and underexplored play
- More information on the “Lower Carboniferous” poster

Dinantian Carbonates
- Underexplored play: the Dinantian Carbonates have recently become the target of exploration for both hydrocarbons and geothermal energy in the Netherlands
- Several prospects and leads identified, currently being pursued

For questions contact info@nlog.nl or exploration@ebn.nl

Figure 1. Hydrocarbon systems in the Dutch subsurface. The arrows show hydrocarbon migration from the main reservoir units to the main trapping units (modified after de Jager & Geluk, 2007; Adrichem Boogaert & Kouwe, 1993-1997 and the Southern Permian Basin Atlas by Doornenbal and Stevenson, 2007).

Figure 2. Cumulative energy (PJ) per lithostratigraphic unit in the Netherlands. Pseudo creaming curve (after Doornenbal et al., 2019).