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Management summary 

Production from the Groningen gas field induces earthquakes and ground motion at 

the earth’s surface. The TNO Model Chain is a Probabilistic Seismic Hazard and 

Risk Analysis (PSHRA) tool, specifically developed for the Groningen area to 

predict personal risk from future induced earthquakes. The tool is based on the 

NAM Hazard and Risk Assessment (HRA), but implemented independently in the 

public domain using a different numerical methodology. Barring acceptable 

numerical differences, the tool is able to reproduce the NAM HRA results exactly. 

 

This report summarises the physical-statistical theory, numerical methods, and 

computational implementation of the Seismic Source Model (to forecast induced 

earthquakes), the Ground Motion Model (to translate the earthquakes at reservoir 

depth to ground motions at the surface), and the Damage Model (to translate 

ground motions to building damage/collapse and the risk to people inside those 

buildings). 

 

The TNO Model Chain is designed to be modular, such that the chain elements, 

i.e., the abovementioned model components, can conveniently be updated and be 

replaced by state-of-art model alternatives. Based on the outcomes of these 

models, control measures such as building strengthening, can be designed to 

ensure the public safety in the region.
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 Preface 

Commissioned by the Ministry of Economic Affairs and Climate (EZK), TNO has 

developed a Model Chain that calculates the hazard and risk due to induced 

seismicity in the Groningen gas field in the public domain. The TNO Model Chain is 

largely based on the models that underlie NAM's hazard and risk assessment 

(HRA). The present report is part of a series of three TNO reports. The other two 

reports describe respectively: (1) the infrastructure of the IT platform for the TNO 

calculations; and (2) a comparison of the NAM and TNO implementation of the 

numerical methods and calculated risks. 

 

The scope of the present report is to provide insight into the principles and methods 

behind the development of the public Model Chain. This report consists of three 

Chapters and an Appendix: 
- Chapter 1 is an accessible, introductory description of the functioning of 

and the relationship between the different components of the Model Chain. 

- Chapter 2 is a summary of the theoretical physical-statistical background of 

the model components. 

- Chapter 3 describes the practical implementation of the numerical methods 

applicable to the different components of the Model Chain in detail. 

- The Appendix describes some assumptions and choices behind the 

numerical methods used. 

As a result of the aforementioned scope of this report, Chapter 1 has been written 

for a wide audience and Chapters 2, 3 and the Appendix contain the high-level 

details for experts. 

 

After publication of version 1 of this report, dated June 30 2020, a code review has 

been performed by the external company Tessella1, as initiated by the State 

Supervision of the Mines. The current report version 2 is an update of the June 30 

version. Updates concern textual corrections of equations in Box 2 and Box 8, and 

the first equation on page 35, which already were correctly implemented in the 

Model Chain code and are typo’s in the previous report. Appendix B has been 

added with a list of follow-up points from the external reviewer. 

 
1 Tessella – PSHRA Software review – Software assessment report. Reference: 

NPD/10826/CL/OP, Issue V1.R1.M0, September 29 2020. 
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 1 Introduction 

Gas production from the Groningen gas field leads to induced seismicity. To ensure 

public safety in the region, ground motions and building damage related to future 

induced earthquakes need to be modelled. Based on the outcomes of these 

models, control measures, such as production strategies and building 

strengthening, can be designed. 

 

This report summarises the computational models that form the basis of the current 

version of the TNO Model Chain. The Model Chain has been developed by TNO in 

the period 2017-2019 to be able to perform state-of-the-art Probabilistic Seismic 

Hazard and Risk Analyses (PSHRA) for induced seismicity in the Groningen gas 

field in the public domain. The Model Chain is designed to be modular, such that 

the chain elements, i.e., the component models, can conveniently be replaced by 

alternatives. Alternative models are being developed as scientific knowledge on 

induced seismicity and associated hazard and risk continues to evolve. To ensure 

traceability and reproducibility of these models as part of Quality Assurance, an IT 

Platform is designed that serves as a computation infrastructure to perform the TNO 

PSHRA-calculations. The design of the IT Platform is described in a separate report 

(TNO, 2020).  

 

The version of the TNO Model Chain described in this report is to a large extent 

based on the NAM Hazard and Risk Assessment (HRA) and its model components, 

but implemented independently, using a different numerical methodology. Being 

able to reproduce the NAM HRA results exactly (within some specified numerical 

tolerance) has been an important design criterion (TNO, 2019). In the following, we 

describe the model components as developed and proposed by NAM in the way 

they are implemented by TNO. It is important to note that in this report we do not 

discuss the quality and/or appropriateness of the NAM model choices, and by our 

description and implementation we do not (necessarily) endorse them. 

 

The TNO Model Chain consists of a series of physical-statistical models that 

forecast the seismic hazard and risk above the Groningen gas field for a given 

production scenario. A hazard is defined as a cause of potential harm or damage, 

while risk is the probability of occurrence of harm or damage due to that hazard. In 

the TNO Model Chain the seismic hazard is posed by the ground motions caused 

by the induced seismicity due to gas depletion. The seismic risk is the probability of 

a damage or fatality as a consequence of the ground motion hazard. 

 

The TNO Model Chain is organised hierarchically. At the coarsest level the chain is  

subdivided into three main components (Figure 1), that each comprise several sub-

models: 
1. The Seismic Source Model (SSM), forecasts the spatial and temporal 

distribution of induced earthquakes, as well as their magnitudes,  
conditional on a production scenario. 

2. The Ground Motion Model (GMM), relates the earthquakes at depth to 
ground motions at the surface. 

3. The Damage Model (DM), translates ground motions to building 
damage/collapse and the risk to people inside those buildings. 
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 Figure 1 Schematic overview of the TNO Model Chain Groningen. 

 

 

 

 

The model components described in this report all have the “V5” version 

designation. This combination of models served as the reference in the comparison 

study between the NAM and TNO implementations (TNO, 2019). A brief summary 

of the models is provided below. A more rigorous description of the theory behind 

the probabilistic model chain is provided in Chapter 2. The details of the 

implementation are provided in Chapter 3. Some additional notes on numerical 

implementation are provided in Appendix A. 

 

Seismic Source Model (SSM) 

The Seismic Source Model (SSM) is based on the work by Stephen Bourne, Steve 

Oates and co-workers. The model has been developed in a number of stages as 

reported in several peer reviewed journal papers (Bourne et al., 2014; 2015; 2018; 

Bourne & Oates, 2017; 2018). None of the paper describes the exact model version 

“V5”, however. The best reference for implementation has been the technical report 

(Bourne et al., 2019), supplemented with personal communication. 

Induced earthquakes as a result of gas depletion in the Groningen gas field are 

assumed to be caused by differential compaction along existing faults. To model 

induced earthquakes we therefore need to know how the gas depletion translates to 

reservoir compaction (vertical strain) and the locations and properties of existing 

faults in the subsurface. In addition, to forecast induced earthquakes we also need 

historic induced earthquakes and corresponding past gas production pressure 

changes to train the model. Note that the model calibration to forecast induced 

earthquakes is not addressed in the comparison between the NAM HRA and the 

TNO Model Chain (TNO, 2019), but is nevertheless part of the TNO Model Chain. 

 

Inputs to the SSM include static data such as reservoir geometry, compressibility 

and fault data, as well as the dynamic data on pore pressure changes as a result of 

a gas production scenario (past or future), which are all provided to TNO by NAM. 

The catalogue of observed induced earthquakes originates from the seismological 

service of the KNMI.  
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The compaction model computes vertical strains from the pore pressure changes of 

a given gas production scenario. These vertical strains in combination with the fault 

properties and fault locations are translated to a spatial and temporal distribution of 

Coulomb stress changes. The distribution of Coulomb stress changes is converted 

to a seismicity distribution in time and space.  

 

The Seismic Source Model includes an Epidemic-Type Aftershock Sequence model 

(ETAS) to compute an aftershock seismicity distribution dependent on the main 

shock distribution. The aftershock distribution is added to the main distribution to 

form a total seismicity distribution. A b-value model is then used to define the 

magnitude distribution of these seismic events. The magnitude distribution is 

bounded by a maximum possible magnitude (Mmax). The result is a distribution of 

total (main + aftershocks) seismicity in time, space and magnitude. 

 

The Seismic Source Model contains certain parameters, which are determined by 

training of the model using past gas production years with all possible combinations 

of model parameters and comparing the outcome of expected seismicity with the 

monitored seismicity in the past. Model parameter combinations that can 

retroactively predict the past seismicity well, are assumed to be more likely. The 

trained model weighs these more likely combinations of parameters more heavily 

when forecasting seismicity for a future gas production scenario. This results in a 

probability of seismicity occurring in space-time-magnitude. 

 

Finally, a rupture model translates the distribution of hypocenter locations into a 

rupture plane distribution with associated magnitudes (Bourne & Oates, 2018). This 

rupture model is included to reflect that earthquakes (i.e. the sources of seismic 

waves) do not occur on an infinitesimally small point, but rather on a rupture plane 

of finite size. The rupture model describes a probabilistic spatial extent for a rupture 

plane, given a hypocenter location. The length of the rupture depends on the 

magnitude of the earthquake, while the orientation is based on an average fault 

strike representative in the Groningen subsurface and the associated variability. 

The final output of the Seismic Source Model is a statistical distribution of seismicity 

of a certain magnitude, at a certain distance and within a certain year, for every 

point at the surface. 

 

Ground Motion Model (GMM) 

The Ground Motion Model is based on the collective work of Bommer et al. (2015-

2018) and describes how an earthquake at a certain (rupture) distance and of a 

certain magnitude contributes to a statistical distribution of ground motions. As 

ground motions are complex, we don’t simulate the complete expected ground 

motion for every earthquake, but only the attributes of the motion that are likely to 

affect infrastructure and buildings. These attributes are horizontal spectral 

accelerations (SA) at 23 different periods, peak ground velocity (PGV) and the 

durations of these movements. The spectral accelerations are simulated at multiple 

periods, because different types of buildings have different natural vibration periods.   

To simulate ground motions at the surface, we first model them at a hypothetical 

surface at the base of the North Sea Group (NS_B), located at a depth of around 

800 m. This surface is the top of the sequence of hard rocks in the subsurface. The 

shallower formations are soil layers that amplify (or attenuate) the ground motions 

of the solid rock below (Figure 2). The amount of amplification strongly depends on 
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 the type of soil the wave propagates through. To account for spatial variation in 

soils, and therefore the spatial variation in amplifications factors, a site-response 

zonation model (Figure 3) is used. The outlines of these site response regions are 

pre-defined (Bommer et al., 2018) and are used in the TNO Model Chain to 

determine which point at the surface belongs to which region. For each region, the 

site response translates the motions at NS_B level to ground motions at the 

surface, resulting in different ground motion distributions at equal distances from the 

hypocentre in different regions.  

 

  

Figure 2 Schematic overview of the ground motion model. Showing the translating from a 

hypothetical earthquake to ground motion at the base North Sea Group (NS_B) and 

the translation to the surface ground motion through amplification for different types of 

soil. Zones A, B, C, and D are hypothetical zones to visualize the amplification for 

different types of soil.  

 

Model parameters used to model the ground motions are calibrated by ground 

motion measurements and provided by NAM (Bommer et al., 2018). The calibration 

of these model parameters is not part of the GMM. The calibrated model 

parameters are used as input for the GMM.  

After combination with the Seismic Source Model, the output of the GMM are 

annual probability of exceedances of spectral accelerations per grid point at the 

surface, for all 23 spectral periods. These can be visualised in hazard curves 

(Figure 4) per grid point or as hazard maps for a given spectral period and annual 

frequency (return period). For a hazard map, the spectral acceleration is sampled 

from the hazard curve at a certain return period for all grid points. The default return 

periods in the GMM in the TNO Model Chain are 475 and 2475 year, but can be 

specified by the user. A return period of 475 year corresponds to an annual 

probability of exceedance of 1/475 = 0.002 (a 10% probability of exceedance in 50 

years). The return period is the average time in between exceedances of a certain 

spectral acceleration of a certain frequency.  
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Figure 3 Site-response regions based on shallow (above base North Sea Group), sharp geological 

boundaries (from Bourne et al., 2018). Different colours indicate different geological 

profiles and the numbers are the zone ID numbers. 

 

The Damage Model (DM) 

The Damage Model consists of two components (Crowley et al., 2017; Crowley & 

Pinho, 2017): 
- Fragility model 
- Consequence model 

 

The fragility model describes the behaviour of 54 building types (typologies) when 

subjected to a certain ground motion. These typologies are the result of a 

categorisation of all the buildings in the Groningen area, based on structural 

attributes that are likely to have a big impact on the response of the building to a 

certain ground motion, e.g. the number of storeys. The model works with three 

damage states and three collapse states and calculates the probability of 

exceedance of every damage/collapse state per typology for a given ground motion.  
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 The consequence model describes the probability of dying (fatality) as the result of 

structural collapse of a building. The output of the consequence model is local 

personal risk (LPR) per typology. This is the risk of a single hypothetical person 

dying, who is assumed to be permanently present within/around the building. The 

person is assumed to be 99% of the time inside the building and 1% of the time 

outside (within 5 m of the building). The local personal risk is computed based on 

the probability of exceedance of the collapse states. The damage states do not 

contribute to the local personal risk, as only the collapse of a building is assumed to 

cause the death of a person. 

 

 

Figure 4 Example of hazard curves of all 23 frequencies (shown as period (s), ranging from 0.01 to 

5 s, as listed on the right side of the graph) for one grid point. The two horizontal grey 

lines indicate the 475 and 2475 year return periods. The intersection between the 

return period line and the hazard curve is the spectral acceleration for this grid point to 

be visualized on a hazard map. 

 

After combining the probability of exceedance of the collapse states with an 

exposure database, which contains information of which building type is located at 

which coordinates in the Groningen area, the LPR is used to compute the number 

of buildings that exceed the Meijdam-norm (LPR = 10-5/year).  The Meijdam-norm 

defines the threshold of tolerable risk, where an individual person has a yearly 

probability of 1 in 100.000 to die due to an earthquake. This risk threshold is similar 

to the thresholds defined for fatality risk of natural hazards, such as storms or 

floods.  

 

The input for the Damage Model is: 
- Probabilistic ground motion forecast (output) from the GMM. 
- Model parameters per typology for the fragility model, translating ground 

motions to probability of collapse/damage states. These parameters are 
provided by NAM (Crowley & Pinho, 2017) and have been defined by 
calibrating numerical models of building damage to experimental results.  

- Model parameters per typology for the consequence model, translating the 
probability of the collapse states to the probability of fatality. These 
parameters have also been provided by NAM (Crowley & Pinho, 2017). 
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 - Building database of Groningen, containing the locations of 150.000 
buildings in the Groningen area and the probability of membership to a 
certain typology. This database is provided by Arup. 

 

Logic tree 

The TNO Model Chain is a probabilistic model that aims to capture all uncertainties. 

We distinguish two types of uncertainties: epistemic (model) and aleatory. Aleatory 

uncertainties are statistical uncertainties related to the randomness of the system 

that is being investigated, for example the time and location of earthquakes. 

Aleatory uncertainties are captured in the TNO Model Chain by probability 

distributions. Epistemic or model uncertainties are associated with inadequacies of 

the model, such as simplifications, theoretical assumptions and limitations in the 

accuracy of data used for calibration of the model.  

To account for epistemic uncertainties a logic tree is used (Figure 5). Every logic 

tree branching level represents a number of model alternatives. The weights 

assigned to every logic tree branch should add up to one for each branching level. . 

Determination of model alternatives of the logic tree, as well as the logic tree 

weights are not part of the TNO Model Chain. Logic tree parameters and weights 

are considered as input. 

The TNO Model Chain can be run for a single combination of branches, or directly 

for the full range of 7x4x2x3x3 = 504 branch combinations, computing the mean of 

the entire logic tree. The Model Chain output of the mean of the logic tree includes 

all epistemic uncertainties captured in the logic tree.

 

Figure 5 Logic tree used in the TNO Model Chain, consisting of 5 branching levels, each 

containing 2-7 levels, resulting in a total of 504 (7x4x2x3x3) branch combinations. The 

p-values are the weights per level, the discrete probabilities. 
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 2 Probabilistic Seismic Hazard Analysis 

Probabilistic Seismic Hazard and Risk Analysis (PSHRA) involves calculating the 

probabilities of possible consequences of earthquake activity, taking into account - 

as much as possible and/or practically feasible – the various sources of uncertainty.  

In the current chapter we provide a theoretical framework for PSHRA, with a 

generic description in Section 2.1, and a more detailed realisation as is used in the 

TNO Model Chain in Section 2.2. However, many details of the practical 

implementation are left for Chapters 3 and 4. 

 

2.1 A probabilistic model for seismic hazard and risk analysis 

 Earthquake consequences and uncertainty 

The consequences that are being addressed in the PSHRA concern various types 

of events2 that may or may not occur as a direct result of a single earthquake. 

Examples of these events are the exceedance of a particular ground motion 

intensity level at a specific location, the exceedance of a particular damage state for 

a specific building, or the decease of a person present inside a specific building as 

a result of building collapse.  

Whether or not an event occurs depends on a wide range of (physical) 

circumstances, including properties of the earthquake process and properties of the 

subsurface that propagates the ground motions, but also, depending on the type of 

event considered, properties of the building or the person exposed, or even the 

state of infrastructure and the quality of emergency response efforts. These 

circumstances are to a large extent unknown.  

One of the central tasks of PSHRA is to capture all uncertainties in terms of a 

probabilistic model. It is common to distinguish two categories of uncertainty: 

epistemic and aleatory.  

The first category, epistemic uncertainty, is mainly associated to inadequacies of 

the model, such as theoretical assumptions and simplifications, computational or 

numerical compromises, and limitations in the amount or accuracy of the data used 

for calibration. A frequently occurring limitation is a lack of data in the range of the 

model that really matters for the future consequences, such that extrapolation is 

required. A trivial example is the lack of future data: a forecast is always an 

extrapolation into the future. However, in risk analysis in general, there is always a 

relative lack of data in the range of the rare events that have the worst 

consequences. In seismic risk analysis, for example, it is  difficult to extrapolate 

data obtained from lower magnitude earthquakes to forecast the effects of higher 

magnitude events. Epistemic uncertainty is often interpreted as a lack of knowledge 

that could, in principle, be minimized by doing more experiments or observations 

(including also: in the future), developing better models, or making a better effort in 

computation.  

The second category of uncertainty, the aleatory variability, is complementary to 

epistemic uncertainty, in the sense that it refers to uncertainties that are considered 

to be irreducible in practice. Examples include the time, place and magnitude of the 

 
2 To prevent confusion: the term “event” is used in a generic sense as something that may happen 

with some associated probability. The term “event” does not refer to an earthquake here. 
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 next  (or any) earthquake, and the value of a ground motion attribute relative to a 

(presumably) predictable median.  

The distinction between the two categories of uncertainty is inherently subjective. 

From a practical point of view, it is often more relevant to make a distinction in the 

quantitative treatment of the uncertainties. Aleatory variability, on the one hand, is 

usually quantified by means of (parameterized) probability distributions, that are, at 

least to some extent, calibrated by empirical or experimental data. Inadequacies in 

the probabilistic descriptions, such as in the choice of distribution and uncertainties 

in the distribution parameters, belong to the epistemic realm. Epistemic uncertainty, 

on the other hand, is inherently difficult to quantify. It is usually handled by providing 

a limited set of model alternatives, with associated weights based on simple 

heuristics or “expert opinion”. Various sources of epistemic uncertainty are usually 

combined as branching levels in a logic tree framework. 

 Random variables, events and probability distributions 

A probabilistic model represents a natural process or experiment in terms of a 

number of random variables and their mutual relationships, described by their joint 

probability distribution. In addition, a number of events are defined. These events 

are specific sets of outcomes of the aforementioned process or experiment to which 

a probability is assigned. For each outcome of the process/experiment, i.e., for each 

realization of the random variables, the model predicts whether an event occurs or 

not. The probability of the event is then defined as the probability-weighted fraction 

of event occurrences among all possible realizations. 

The number and type of random variables included in the probabilistic model may 

vary per application. Typical examples in PSHRA are ground motion attributes, 

earthquake magnitudes, hypocentre coordinates, rupture lengths and orientations, 

building fragility, etc. It may depend on the application which variables are 

considered to be random and which are chosen fixed. For example, in a scenario-

type assessment, where an earthquake of a specific magnitude is assumed to take 

place at a specific distance from an object of interest, both earthquake location and 

magnitude will be fixed as a condition, whereas in a personal safety assessment, 

the probability distributions of both will need to be accounted for.  

In the mathematics of probability theory, a probabilistic model is defined by three 

main parts, collectively called the probability space, being the sample space Ω, a 

set of events ℰ, and a probability measure 𝑃.  

Let Ω be the sample space of the random variables associated with the probabilistic 

model, and 𝜔 an arbitrary element of that space, i.e., 𝜔 ∈ Ω. Note that 𝜔 can 

equivalently be regarded as a vector of interdependent scalar random variables or 

as single, multivariate random variable. Also note that Ω can contain continuous as 

well as discrete dimensions.  

The probabilistic model associates the sample space Ω with a probability measure 

𝑃(ω) such that 

 ∫𝑑𝑃(ω)

Ω

= 1. (1) 

This expression basically states – trivially – that the total probability of all possible 

realizations of 𝜔 ∈ Ω in this probabilistic model equals 1.  

Under certain assumptions this integral may also be expressed in terms of a (joint) 

probability density function (PDF)  𝑓Ω(ω): 

 ∫𝑓Ω(ω)𝑑𝜔

Ω

= 1. (2) 
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 Formally, this only holds if all dimensions of Ω correspond to continuous variables 

and the probability distributions are absolutely continuous. For discrete variables, 

the integral over a PDF in (2) should actually be replaced with a discrete sum over a 

probability mass function (PMF). Also, in some cases, the probability density 

“function” has the properties of generalized function (such as the Dirac delta 

distribution). This is the case, for example, when a random variable reduces to a 

deterministic value (e.g., when evaluating a conditional probability). The advantage 

of the notation in (1) is that it includes all cases and is rather compact, especially 

when more variables are made explicit; the advantage of the notation in (2) is that it, 

by being more verbose, is sometimes more convenient to express the 

interdependence of the random variables. 

Any arbitrary function over the sample space, say 𝑔:Ω → ℝ, defines, in conjunction 

with the probability measure 𝑃(ω), a random variable. The expectation value E(𝑔) 

can be found by integration over the full extent of the probability distribution,  

 E(𝑔) = ∫𝑔(ω)𝑑𝑃(ω)

Ω

= 1, (3) 

a process also referred to as marginalization. 

To define an event 휀 ∈ ℰ, let 𝑔 be a quantity of interest, such as a ground motion 

attribute, a measure of the (excess) seismic demand on a building, or a measure of 

damage cost. The event 휀 can now be defined by a predicate on 𝑔:  

 휀: {𝜔 ∈ Ω | 𝑔(𝜔) > �̃�}, (4) 

which defines a subset of the sample space Ω where the predicate holds (휀 ⊂ Ω). In 

this example, the predicate defines the exceedance of some reference value �̃� If 

the parameter �̃� can take on arbitrary values, the formulation (4) basically defines a 

parameterized range of events. As an example, consider a (continuous) range of 

(reference) ground motion attributes for which the exceedance probabilities need to 

be determined. The set ℰ contains all events that are relevant to the hazard and/or 

risk assessment. 

To determine the probability of the occurrence of event 휀, we make use of an 

indicator function 𝟏𝜀(ω):  

 𝟏𝜀(ω) = {
1 if ω ∈ 휀
0 if ω ∉ 휀

. (5) 

The probability 𝒫(휀) can now be expressed as the expectation value of 𝟏𝜀(ω):  

 𝒫(휀) = E(𝟏𝜀) = ∫𝟏𝜀(ω)𝑑𝑃(ω),

Ω

 (6) 

or the probability-weighted fraction of occurrences of event 휀 for all possible 

realizations in sample space Ω. Similar to the equivalence of (1) and (2) also this 

expression may – under the circumstances mentioned above – be expressed in 

terms of the PDF:  

   𝒫(휀) = ∫𝟏𝜀(ω)𝑓Ω(ω)𝑑𝜔.

Ω

 (7) 

It interesting to remark that the two distinct notations in (6) and (7), although 

mathematically nearly equivalent, point in the direction of two different approaches 

for numerical implementation. The first approach, following notation (6), is to 

approximate the integral by a finite sum over discrete samples, where each sample 

represents a part of Ω with equal probability (𝑑𝑃Ω → ∆𝑃Ω). The second approach, 

following notation (7), is to approximate the integral by a finite sum over discrete 

samples, where each sample represents a part of Ω with equal “volume” (𝑑𝜔 → ∆𝜔). 

To properly account for the probability structure, each sample must then be 

weighted by the local probability density (𝑓Ω(ω)∆𝜔).  
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  Earthquake activity and event recurrence rates 

The events discussed in the previous section are causal effects directly associated 

to a single earthquake occurrence. In practice, however, it is often important to 

assess the hazard or risk associated to being exposed continuously to all seismicity 

in a seismically active region. These assessments require taking into account the 

seismic activity rate, i.e., the expected number of earthquakes above a certain 

minimum magnitude 𝑚0, per unit time. Also, when considering the spatial 

distribution of the earthquakes it is useful to specify the activity rate density in 

space.  

Let 𝜆 be the activity rate for all earthquakes in the area of interest above a certain 

minimum magnitude 𝑚0. Then let 𝒫 be the probability of occurrence of some 

defined probabilistic event, taking into account both earthquake origin location and 

magnitude as random variables. In its simplest form, the event recurrence rate ℛ 

due to seismicity anywhere in the region may then simply be expressed as the 

product:  

 ℛ(휀) = 𝜆𝒫(휀), (8) 

or in other words, the event recurrence rate ℛ(휀) is a fraction of the seismic activity 

rate 𝜆, with a proportionality factor 𝒫(휀), being the probability of event occurrence 

per earthquake. 

In many circumstances it is useful to explicitly address the spatial dependence, 

using the spatial seismic activity rate density 𝜆𝑋(𝑥): 

 ℛ(휀) = ∫𝒫(휀|𝑥)𝜆𝑋(𝑥)𝑑𝑥

𝑋

, (9) 

with 𝑋 the spatial domain of the earthquake locations, and 𝒫(휀|𝑥) the conditional 

event probability, condition on the occurrence of an earthquake at location 𝑥 ∈ 𝑋.  

The spatial activity rate density 𝜆𝑋(𝑥) satisfies the following relation: 

 𝜆 = ∫𝜆𝑋(𝑥)𝑑𝑥

𝑋

, (10) 

and we can define: 

 𝑓𝑋(𝑥) =
𝜆𝑋(𝑥)

𝜆
, (11) 

such that 𝑓𝑋(𝑥) may act as the PDF for 𝑥 (i.e., ∫ 𝑓𝑋(𝑥)𝑑𝑥 = 1
𝑥

). 

To take this one step further, also the magnitude dependence can explicitly be 

factored out: 

 ℛ(휀) = ∬𝒫(휀|𝑥,𝑚)𝜆𝑋𝑀(𝑥,𝑚)𝑑𝑥𝑑𝑚

𝑋,𝑀

, (12) 

with 𝑀 the domain of the magnitudes (𝑀: {𝑚 ∈ ℝ|𝑚 ≥ 𝑚0})  and 𝒫(휀|𝑥,𝑚) the 

conditional event probability for an earthquake of magnitude 𝑚 at location 𝑥. The 

earthquake activity rate density in both space and magnitude 𝜆𝑋𝑀 is defined as  

 𝜆𝑋𝑀(𝑥,𝑚) = 𝜆𝑋(𝑥)𝑓𝑀(𝑚|𝑥), (13) 

with 𝑓𝑀(𝑚|𝑥) the PDF of 𝑚, conditional on 𝑥, such that: 

  𝜆𝑋(𝑥) = ∫𝜆𝑋𝑀(𝑥,𝑚)𝑑𝑚

𝑀

. (14) 

Similar to above, the earthquake rate density in both space and magnitude can be 

normalized to a PDF: 

 𝑓𝑋𝑀(𝑥,𝑚) =
𝜆𝑋𝑀(𝑥,𝑚)

𝜆
= 𝑓𝑋(𝑥)𝑓𝑀(𝑚|𝑥), (15) 

such that the event recurrence rate can be written as: 

 ℛ(휀) = 𝜆 ∬𝒫(휀|𝑥,𝑚)𝑓𝑋𝑀(𝑥,𝑚)𝑑𝑥𝑑𝑚

𝑋,𝑀

, (16) 
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 or, more succinctly, 

 ℛ(휀) = 𝜆 ∬𝒫(휀|𝑥,𝑚)𝑑𝑃(𝑥,𝑚)

𝑋,𝑀

. (17) 

which both (still) evaluate to (8), which is the marginalized form when magnitude 

and location are integrated out. 

 Reference time frames and event probabilities 

The earthquake activity rates in the previous section have been expressed without 

a specific reference to time, although it is understood that in general circumstances, 

but especially in the case of induced seismicity, the seismic activity rate itself varies 

with time. The activity rate density 𝜆𝑋(𝑥) in (9) can be interpreted in two major ways. 

First, it can be interpreted as the instantaneous rate density: 

 𝜆𝑋(𝑥) ≡ 𝜆𝑋(𝑥, 𝑡), (18) 

where we explicitly express the dependence on time. Second, it can be interpreted 

as the average rate density over a time interval 𝑇, with length |𝑇|: 

 𝜆𝑋(𝑥) ≡
1

|𝑇|
∫𝜆𝑋(𝑥, 𝑡)𝑑𝑡.

𝑇

 (19) 

Note that expression (19) includes expression (18) as a special case, in the limit 

|𝑇| → 0, an infinitesimal time interval. Also note that, in general, the magnitude 

distribution may change over time as well. In that case, either a similar 

interpretation can be made for the rate density 𝜆𝑋𝑀(𝑥,𝑚) in (13), or time 

dependence of conditional probability 𝒫(휀|𝑥) in (9) – in which the magnitude 

distribution is incorporated – should be properly accounted for (i.e., 𝒫(휀|𝑥) ≡

𝒫(휀|𝑥, 𝑡)).  

For a hazard or risk assessment it is common practice to refer to probabilities within 

a specific – hypothetical – reference time frame. This time frame may be, for 

example, 1 year, or 50 years, but in general it may be different from both the actual 

time frame of analysis (instantaneous as in (18), or an interval, as in (19)), and the 

basic unit of time (seconds, years, ..).  

In the reference time frame, say ∆𝑡, the region-wide activity rate 𝜆 = ∫ 𝜆𝑋(𝑥)𝑑𝑥𝑋
 is 

then considered stationary, and the expectation value of the total number of 

earthquakes is equal to 𝜆∆𝑡.  

In (hypothetical) realizations of seismicity in the reference time frame the actual 

number of earthquakes will vary. The earthquake count 𝑛 is a random variable that 

can be described using a discrete probability distribution. 

If all earthquakes are mutually independent, in the sense that the spatio-temporal 

and magnitude probability distribution of each earthquake does not depend on 

previous earthquake occurrences, then the earthquake count in any finite interval 

follows a Poisson distribution. For an expected count of 𝜈, the probability mass 

function (PMF) of the Poisson distribution reads 

 𝑝𝑁(𝑛|𝜈) =
𝜈𝑛

𝑛!
𝑒−𝜈, (20) 

and indeed, the probability-weighted count – or expectation value – equals 

∑ 𝑛𝑛 𝑝𝑁(𝑛|𝜈) = 𝜈. Hence, assuming the Poisson distribution, the probability of 

encountering 𝑛 earthquakes (above magnitude 𝑚0) in the reference time frame 

equals 𝑝𝑁(𝑛|𝜆∆𝑡). A similar argument can subsequently be used for the event 

count, replacing activity rate 𝜆 by event recurrence rate ℛ(휀), such that the 

probability of encountering 𝑛 events in the reference time frame equals 

𝑝𝑁(𝑛|ℛ(휀)∆𝑡).  

The most common probability metric is the probability 𝒫(𝑛𝜀 > 0) – with 𝑛𝜀 the 

number of occurrences of event 휀 – that an event happens at least once in the 



 

 

TNO report | TNO2020 R11052 | 3  17 / 72 

 reference time frame. This probability is the complement of the probability that the 

event does not occur at all: 

 𝒫(𝑛𝜀 > 0) = 1 − 𝒫(𝑛𝜀 = 0) = 1 − 𝑝𝑁(0|ℛ(휀)∆𝑡) = 1 − 𝑒−ℛ(𝜀)∆𝑡 . (21) 

In seismic hazard analysis, this relationship is often used in an inverse manner. 

When both the probability 𝒫 and the reference period ∆𝑡 are fixed, then the rate 

ℛ(휀) is determined by:  

 ℛ(휀) = −
ln(1 − 𝒫)

∆𝑡
. (22) 

In case of the choices 𝒫 = 10% and ∆𝑡 = 50 years, the corresponding rate ℛ(휀)  is 

2.11 × 10−3 per year. The inverse of the event rate, the event return period, equals 

 4.75 × 102. years. Likewise, for 𝒫 = 2%, the numbers are 2.010 × 10−4 per year 

and  2.475 × 103. years. These numbers explain the remarkably return periods of 

475 and 2475 years that are frequently used in seismic hazard assessments. In 

seismic hazard assessment the event 휀 stands for the exceedance of some ground 

motion attribute value. The remaining task is a search to find the attribute value for 

which the exceedance rate equals the specified rate. 

Note that the Poisson assumption of independent events does not hold universally, 

especially in the presence of earthquake clustering, i.e., in the presence of 

aftershock/foreshock mechanisms. In those circumstances equations (21) and (22) 

do not hold and either should be replaced, or should be treated as approximations. 

For the communication of PSHRA results it is often even more convenient to refer 

directly to the (mean/expected) rates of Section 2.2, rather than the probabilities of 

the current section. For rare events, annual probabilities and annual rates are 

approximately equal. 

 Aggregate event rates 

The equations in the previous sections describe events that may or may not occur 

as a direct result of an earthquake, but in all cases, the events are one-to-one 

associated with a single earthquake. However, some type of events may occur 

more than once for a single earthquake.  For example, many buildings (and people) 

are exposed to the same seismicity at once. Let’s say, for example, that 휀 

represents the collapse of a building of a specific type. If the distribution of buildings 

of that type in the area can be represented by a density function α(𝑦), where 𝑦 

represents the spatial coordinates of the building (𝑦 ∈ 𝑌), then the aggregate 

building collapse rate ℛα(휀) may be expressed as:  

 ℛ𝛼(휀) = ∭𝛼(𝑦)𝒫(휀|𝑦, 𝑥,𝑚)𝜆(𝑥,𝑚)𝑑𝑚𝑑𝑥𝑑𝑦

𝑌,𝑋,𝑀

. (23) 

Similarly, when the event 휀 represents a fatality due to an earthquake and α(𝑦) the 

population density, then ℛα(휀) represents the aggregate fatality rate for the region. 

Note that aggregate rates cannot simply be translated into probabilities for a 

reference time frame as in Section 2.1.4, because at the exposure side, many 

events may occur synchronously, so that the Poisson model does not apply. 

2.2 Elements of TNO Model Chain Groningen 

The Probabilistic Seismic Hazard and Risk (PSHRA) model for induced seismicity in 

the Groningen gas field consists of a chain of models that represents the causal 

chain of processes that relates gas production to seismic hazard and seismic risk. 

In a relatively coarse form the TNO Model Chain Groningen is illustrated in Figure 

1, showing as basic chain elements the Seismological Source Model (SSM), the 

Ground Motion Model (GMM), and the Damage Model (DM). The TNO Model Chain 
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 in reality has a hierarchical structure, where each of the model chain elements by 

itself can represent a chain of sub-models.  

 

The current section introduces the main model components, as well as the 

respective sub-models, on a rather global level, with emphasis on the general 

structure of the models, the interdependence of the model components, and the 

random variables considered. This exposition is intended to be more or less 

independent of the precise version of the model components. Details on the 

functional forms are discussed further in Chapter 4. Sections 2.2.1 to 2.2.3 

introduce the SSM, the GMM and the DM respectively. Section 2.2.4 describes the 

integration of the model components to obtain hazard and risk metrics. 

 Seismological source model 

As displayed in Figure 1, the seismic source model (SSM) makes a forecast of the 

seismicity distribution using a gas production scenario as input. The seismicity 

distribution, in this context, involves not only hypocentre locations in both space and 

time, but also the earthquake magnitudes, and the geometry of the rupture planes 

associated with the earthquakes. The SSM is the most complex part of the model 

chain. The following bullet list provides an hierarchical overview of the components. 

• Dynamic subsurface model (section 2.2.1.1) 

o Reservoir fluid flow model 

o Compaction model 

o Shear strain/stress model 

o Covariate conditioning model 

• Seismicity rate model (section 2.2.1.2) 

o Main shock rate model 

o Magnitude model 

o Clustering model 

• Rupture model (section 2.2.1.3) 

o Rupture geometry model 

o Rupture distance model 

As indicated in the bullet list, the subsections first discuss the model components. 

To conclude, subsection 2.2.1.4 discusses the calibration of the SSM on observed 

data. 

2.2.1.1 Dynamic subsurface model 

The activity rate of seismicity in the Groningen gas field has, according to the 

observations, been variable both in time and in space. A seismological source 

model (SSM) that is to be used to forecast seismicity in terms of gas production 

scenario’s for the future, should also be able explain the observations of the past, 

conditional on the gas production realized in the past. The term “explanation” in this 

context should be understood in probabilistic sense. The SSM provides a 

probabilistic forecast of both the number of earthquakes that are to be expected in a 

given time interval, as well as their distribution in time, space, and magnitude 

domain. 

In brief, the task for the SSM is to provide a quantitative relation between gas 

production parameters and the seismicity rate density in space and magnitude, that 

is 𝜆𝑋𝑀, and its variation in time. In other words, 𝜆𝑋𝑀 should depend explicitly on 

subsurface attributes that vary both in space and time as a result of the gas 

production. The approach taken in the Groningen  SSM consists of two steps The 

first steps to define a set of subsurface attributes that will act as a predictor 
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 variables, or covariates for the second step. The second step subsequently 

expresses the seismicity rate in terms of those covariates.  

For the Groningen SSM, various attributes have been proposed, tested and applied 

as covariates (Bourne & Oates, 2018). In the calculation of the covariates two 

mechanical models play an important role. First, a reservoir fluid flow model 

predicts the spatio-temporal pressure evolution within the reservoir from time series 

of gas volumes extracted at the wells. Second, a compaction model predicts the 

deformation of the reservoir as a result of the pressure variations within the 

reservoir. From the compaction, the Coulomb stress field is computed using 

information on the existing fault structures in the reservoir. 

For the recent SSM models (Bourne et al., 2019), the Coulomb stress and fault 

density are conditioned with a spatial smoothing scale parameter and a filter on the 

contributing fault segments based on the fault-throw/reservoir-thickness ratio. The 

model parameter set used in this conditioning is denoted with 𝛾. After the 

conditioning, these quantities act as covariates for the seismicity rate model. The 

exact expression of the covariates in terms of subsurface attributes depends on the 

version of the model used and is discussed in more detail in Chapter 4. For the 

purpose of the current section it suffices to specify the dependencies of variables 

involved. The statement:  

 𝑐 ← {𝑥, 𝑡, 𝛾, 𝒮} (24) 

expresses the dependency of covariates 𝑐 on spatial coordinate 𝑥 and time 𝑡. In 

addition, the dependency statements includes the model parameter set 𝛾, as well 

as the symbol 𝒮, that represents the input data imposed by the gas production 

scenario.  

2.2.1.2 Seismicity rate model 

In the seismicity rate model a distinction is made between the main-shock 

seismicity rate �̂�  and the total seismicity rate 𝜆. The main-shock seismicity rate 

explains the mutually independent earthquakes that follow a Poisson process, while 

total seismicity rate also includes additional earthquakes that are causally related to 

previous earthquakes in the vicinity, commonly referred to as aftershocks.  

The (instantaneous) main-shock rate density in space, �̂�𝑋, is fully determined by the 

subsurface covariates 𝑐 and a set of seismicity rate model main shock parameters 

휃 as specified in the following dependency statement: 

 �̂�𝑋 ← {𝑐, 휃}. (25) 

The combination with (24) gives a nested dependency that may be expanded into: 

 �̂�𝑋 ← {𝑥, 𝑡, 𝛾, 휃, 𝒮}. (26) 

For the total main-shock rate (the spatial density integrated over space) this gives: 

 �̂� ← {𝑡, 𝛾, 휃, 𝒮}. (27) 

As discussed in section 2.1.4, when it comes to forecasts, it is sometimes useful to 

suppress the explicit time dependence of the seismicity rate. In this way, the same 

formulation holds both for instantaneous rates, and for average rates in some time 

interval. Therefore, for forecasts, we may drop 𝑡 from the list in (26) and (27), 

although the dependence on instantaneous time or some definite time interval is still 

present implicitly. 

In section 2.1.3 we discussed the treatment of hypocenter location 𝑥 and magnitude 

𝑚 as random variables, and in section 2.1.4 we discussed the earthquake count 𝑛, 

a random variable representing the number of earthquakes expected in a reference 

time frame. Let �̂� be the main shock count. To highlight both the random character 
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 of variables and their dependencies, without having to make their functional form 

explicit, we introduce the following notation, demonstrated here for �̂� and �̂�: 

 �̂� ⇜ {𝛾, 휃, Δ𝑡, 𝒮}, (28) 

 �̂� ⇜ {𝛾, 휃, 𝒮}, (29) 

with ⇜ used to indicate a probabilistic dependency, contrasting with the ← for a 

deterministic dependency.Statement (28) says that the distribution of �̂� is is 

conditioned on the covariate conditioning parameter set 𝛾, the main-shock rate 

parameter set 휃, the chosen reference time frame Δ𝑡, and the gas production 

strategy 𝒮. In fact, we know in this case that �̂� is distributed as a Poisson 

distribution (20) with rate �̂�Δ𝑡, such that ∫ �̂�𝑑𝑃(�̂�) = �̂�Δ𝑡. Statement (29) says that  

the main-shock hypocentre location �̂� has similar dependency except that it does 

not depend on the reference time frame.  

The magnitude model defines the magnitude distribution (“magnitude-frequency 

relation”) as a function of the subsurface covariates 𝑐 as well. In addition, the model 

depends on a parameter set 𝜓 and a discrete index variable 𝒷𝑠, that labels a 

number of alternative magnitude model choices in the context of epistemic 

uncertainty. The index variable represents a branching level in the logic tree. By 

assigning weights to the individual branches, the index variable becomes a 

categorical random variable.  

Magnitude 𝑚 is a random variable, with the following conditional dependencies: 

 𝑚 ⇜ {𝑐, 𝜓, 𝒷𝑠}. (30) 

As for the spatial rate density, also in this case the nested dependency of 𝑐 could 

be expanded. However, there is no advantage in doing that at this point. 

The total seismicity rate, i.e., including non-Poissonian clustering, is obtained using 

the Epidemic-Type Aftershock Sequence (ETAS) model. In this model, each 

earthquake that occurs raises the seismicity rate locally and temporarily. Given a 

catalogue of 𝑛 earthquakes, with origin times 𝑡𝑖, magnitudes 𝑚𝑖, and hypocenter 

coordinates 𝑥𝑖, (𝑖 = 1. . 𝑛), the observation-conditioned total seismicity rate density 

𝜆𝑋
obs becomes:  

 𝜆𝑋
obs(𝑥, 𝑡, 𝛾, 휃, 휁, 𝒮) = �̂�𝑋(𝑥, 𝑡, 𝛾, 휃, 𝒮) +∑𝑔𝜆(𝑡 − 𝑡𝑖, |𝑥 − 𝑥𝑖|, 𝑚𝑖, 휁)

𝑛

𝑖=1

, (31) 

where |𝑥 − 𝑥𝑖| is the epicentral distance, 휁 is the ETAS model parameter set, with 

휁 = {𝑎, 𝐾}, and 𝑔𝜆 is the spatio-temporal aftershock triggering function defined as: 

 𝑔𝜆(𝑡, 𝑟,𝑚, 휁) = {
0 if 𝑡 ≤ 0

𝐾𝑒𝑎(𝑚−𝑚0)𝑓𝑇(𝑡)𝑓𝑅(𝑟) if 𝑡 > 0
. (32) 

where 𝑎 and 𝐾 parameterize the magnitude dependent aftershock productivity. 

The triggering function (32) includes PDF’s for time (𝑓𝑇) and distance (𝑓𝑅), such that 

the integral over time and space provides the aftershock productivity: 

 ∬𝑔𝜆(𝑡, 𝑟,𝑚, 휁)(2𝜋𝑟)𝑑𝑟𝑑𝑡

∞

0

= 𝐾𝑒𝑎(𝑚−𝑚0). (33) 

In a seismicity rate forecast for a time interval at some distance in the future, the 

actual earthquake occurrences are not known, and therefore should be assumed 

distributed everywhere and any time, with the frequency imposed by the seismicity 

rate. The effective increase in activity rate due to aftershocks is therefore distributed 

as well. Under the relatively mild assumption that the main-shock rate is smooth in 

time and space compared to the length scales of 𝑓𝑇(𝑡) and 𝑓𝑅(𝑟), the effects of 

aftershocks can be represented by the aftershock productivity only. Note that this 

does not hold for short-term forecasting, where the enhanced rates due to the 
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 earthquakes that occurred in the recent past should be included as prior conditions 

explicitly.  

The effective aftershock productivity can be seen as the product of a sequence of 

aftershock generations, each generation increasing the previous generation by a 

constant factor. The productivity factor 𝜉 for each generation can be calculated as 

follows: 

 𝜉 =  ∫𝐾𝑒𝑎(𝑚−𝑚0)𝑑𝑃(𝑚)

𝑀

. (34) 

Using (30) and with 휁 = {𝑎, 𝐾} we find: 

 𝜉 ← {𝑐, 𝜓, 휁, 𝒷𝑠}. (35) 

For physically realistic models, the factor 𝜉 is smaller than 1, which puts a prior 

constraint on 휁 = {𝑎, 𝐾}. The effective productivity factor for all generations 𝛤 then 

becomes a geometric series:  

𝛤 = 1 + 𝜉 + 𝜉2 + 𝜉3 +⋯ =
1

1 − 𝜉 
, 

such that: 

 𝛤 ← {𝑐, 𝜓, 휁, 𝒷𝑠}. (36) 

The (unconditioned) total seismicity rate 𝜆 can now be found by integrating 𝛤 over 

the spatial domain: 

 𝜆 = �̂� ∫𝛤𝑑𝑃(�̂�),

𝑋

 (37) 

with the dependencies composed from (27),suppressing 𝑡, (29) and (36): 

 𝜆 ← {𝛾, 휃, 𝜓, 휁, 𝒷𝑠 , 𝒮}. (38) 

This expression makes clear that the total seismicity rate depends on many 

parameters: parameters of the covariate conditioning model, the main-shock 

seismicity rate model, the magnitude model and the clustering model, as well as on 

the magnitude model choice, and ultimately the production parameters. It is 

interesting to note that the coupling between the magnitude model and the total 

seismicity rate model, as witnessed by the 𝜓 parameter in (38), is induced by the 

ETAS clustering model, because the aftershock activity depends on the magnitude 

distribution. This coupling is not yet present in the main-shock rate (27), nor in the 

observation-conditioned seismicity rate of (31). This means that if the rate model is 

conditioned on an observed dataset, there is no explicit coupling (correlation) 

between the activity rate and the magnitude model parameters. 

From (38) follow the distributions for the total number of earthquakes 𝑛 in a time 

interval Δ𝑡, and the spatial location of any earthquake (main or aftershock), 

analogous to (28) and (29): 

 𝑛 ⇜ {𝛾, 휃, 𝜓, 휁, 𝒷𝑠 , Δ𝑡, 𝒮}, (39) 

 𝑥 ⇜ {𝛾, 휃, 𝜓, 휁, 𝒷𝑠 , 𝒮}, (40) 

as well as the notion that 

 𝑑𝑃(𝑥) = 𝛤𝑑𝑃(�̂�). (41) 

Finally, given either deterministic values or probability distributions for 𝛾, 휃, 𝜓, 휁, and 

𝒷𝑠, the expectation of the total seismicity rate can be found by marginalization over 

the full probability space: 

 𝜆MEAN(𝒮) = ∰𝜆𝑑𝑃(𝑥, 𝛾, 휃, 𝜓, 휁, 𝒷𝑠). (42) 

In section 2.2.1.4 we discuss the ways to obtain the probability distributions for the 

parameter sets. The probability distribution for the logic tree branching level 𝒷𝑠 is 

usually set by means of expert judgment/elicitation. 
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 2.2.1.3 Rupture model 

The seismicity rate density forecasts discussed above describe the spatial 

distribution of earthquake hypocentres. A hypocentre is defined as the point in 

space where an earthquake starts, or in other words, where the earthquake rupture 

nucleates. After nucleation, the rupture may and will propagate in various directions. 

In the Groningen model chain it is assumed that earthquakes nucleate at reservoir 

depth, assumed at 3 km. The rupture takes place at existing fault planes that are 

sub-vertical, and ruptures may propagate laterally along the strike directions and 

down dip, but not upwards. Since the ground motions in the Groningen model are 

conditioned on the nearest distance of the observation point to the rupture plane 

(see Section 2.2.2), the geometry of the rupture plane is an important element of 

the forecast, especially for higher magnitudes. 

The fault geometry model used in the TNO Model Chain Groningen is relatively 

simple. The fault planes are assumed to be perfectly vertical such that the point on 

the rupture plane with the shortest distance to an observation point is always at the 

top of the fault. This means that only the horizontal trace of the rupture is relevant, 

not its extent in depth. Also, the fault plane is always assumed to be planar, so the 

trace is a straight line segment. The rupture trace segment geometry is described 

by three random variables: (1) its length, which is magnitude dependent, (2) its 

orientation (azimuth) relative to the median value 𝜑rup, and (3) its position relative to 

the hypocenter. The random variables have a lognormal, a normal and a bounded 

constant distribution, respectively. In the following, these parameters are 

summarised in the rupture model parameter set 𝜌. More details are provided in 

Chapter 4. In the seismological models proposed by NAM the median rupture 

azimuth and its variations have been chosen fixed for the entire field, based on the 

strike of the dominant fault systems. 

Let 𝑥 be a hypocentre, and 𝑦 a point at the surface, i.e., an observation point or the 

location of some exposed structure. Then the hypocentral distance 𝑟hyp and azimuth 

𝜑hyp, and the relative angle of observation of the rupture plane 𝜑 are well defined:  

 {𝑟hyp, 𝜑hyp} ← {𝑥, 𝑦}, (43) 

 𝜑 = 𝜑hyp − 𝜑rup. (44) 

As a result, given the geometry of the rupture plane, i.e., an instance of the rupture 

model parameters 𝜌, the rupture distance, or the distance to the nearest point on 

the rupture is determined as well: 

 𝑟rup ← {𝑟hyp, 𝜑, 𝜌}. (45) 

The rupture model also defines the probability distributions for the rupture model 

parameters, which depend only on magnitude, i.e.,  

 𝜌 ⇜ {𝑚}. (46) 

As a result, by marginalizing the rupture model parameters, a rupture distance 

distribution is obtained: 

 𝑟rup ⇜ {𝑟hyp, 𝜑,𝑚}, (47) 

which shows that the rupture distribution depends only on hypocentral distance, the 

azimuth relative to the median rupture orientation, and the magnitude. 

2.2.1.4 Seismic source model calibration 

The success of the seismicity rate model depends to a large degree on the various 

parameter settings. The parameters can be calibrated on the observed seismic data 

using a hindcast based on the historic production scenario. The hindcasted 

seismicity rate, with aftershock rate distributions conditional on the actual events is 
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 shown in equation (31). Extended with the magnitude distribution (30), with PDF 𝑓𝑚 

this gives: 

 𝜆𝑋𝑀
obs(𝑥, 𝑡,𝑚, 𝛾, 휃, 𝜓, 휁, 𝒷𝑠 , 𝒮) = 𝜆𝑋

obs(𝑥, 𝑡, 𝛾, 휃, 휁, 𝒮)𝑓𝑚(𝑚|𝑐(𝑥, 𝑡), 𝜓, 𝒷𝑠). (48) 

The total expected number of events over the observation periods is found by a 

temporal and spatial integral: 

 Λobs(𝛾, 휃, 휁, 𝒮) = ∬𝜆𝑋
obs(𝑥, 𝑡, 𝛾, 휃, 휁, 𝒮)𝑑𝑡𝑑𝑥

𝑋,𝑇

. (49) 

The combination of (48) and (49) gives a probability distribution in space, time and 

magnitude for all events: 

 𝑓𝑋𝑇𝑀(𝑥, 𝑡,𝑚|𝛾, 휃, 𝜓, 휁, 𝒷𝑠 , 𝒮) =
𝜆𝑋
obs(𝑥, 𝑡, 𝛾, 휃, 휁, 𝒮)

Λobs(𝛾, 휃, 휁, 𝒮)
𝑓𝑚(𝑚|𝑐(𝑥, 𝑡), 𝜓, 𝒷𝑠). (50) 

In the context of parameter estimation the probability distribution is a likelihood 

function that can be applied to all observed earthquakes. Because of the 

normalization, the likelihood function above is not sensitive to the event count. 

However, a complementary likelihood expression for the number of observed 

earthquakes is found in (20): 

 𝑝𝑁 (𝑛
obs|Λobs(𝛾, 휃, 휁, 𝒮)). (51) 

The total likelihood is a product of (51) and 𝑛obs evaluations of (47), one for every 

earthquake in the catalogue. 

According to the Bayesian approach to parameter estimation, the posterior 

probability distribution for the parameters is obtained by a multiplication of the prior 

probability distribution and the likelihood. 

 Ground motion model 

Various generations of ground motion models for Groningen seismicity have been 

developed by Bommer et al. (2015-2018). The ground motion attributes used in the 

TNO Model Chain Groningen are the spectral accelerations and the significant 

duration. In the following, the attributes are summarised in the multivariate ground 

motion attribute 𝑔: 

 𝑔 ≡ (𝑆𝑎[0.01𝑠], 𝑆𝑎[0.025𝑠], … , 𝑆𝑎[5.0𝑠], 𝐷 ),   (52) 

which contains peak spectral accelerations 𝑆𝑎 for a range of spectral periods, and 

significant duration 𝐷.   

The ground motion model is split in two stages that capture two parts of the 

propagation model. The first stage describes the ground motions at the reference 

level, the base North Sea Group (~800 m depth). These motions do not depend on 

the spatial coordinates of either the hypocentre, or the observation point. The 

ground motions at reference level, 𝑔ref, are described as lognormal distributions, 

conditioned on the rupture distance 𝑟rup, the magnitude 𝑚 and the logic tree index 

𝒷𝑔, which represents epistemic uncertainties in both the median ground motion and 

the ground motion variability: 

 𝑔ref ⇜ {𝑟rup, 𝑚, 𝒷𝑔}. (53) 

The second stage describes the propagation of ground motion from the reference 

level to the free surface, also referred to as the site response. The site response 

amplification factors are lognormally distributed as well, conditional on the ground 

motion at reference level 𝑔ref, but also, for a number of spectral periods, on the 

rupture distance 𝑟rup and the magnitude 𝑚. The shallow subsurface is subdivided in 

a number of site response zones with different propagation characteristics. The site 

response zone is indicated by the discrete index variable 𝓈: 
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 𝑔 ⇜ {𝑟rup, 𝑚, 𝑔ref, 𝓈}. 
(54) 

 

The functional forms of the ground motion models are discussed in Chapter 3. 

 Damage Model 

 

The damage model in the Groningen model chain is based on the work of Crowley 

& Pinho (2017) and Crowley et al. (2017). It comprises the fragility and 

consequence models.  

2.2.3.1 Fragility model 

The first step in the fragility models is the definition of an intensity measure for the 

seismic demand imposed on the buildings by the seismic ground motions, in terms 

of the displacement. The measure is different for the each building typology, but in 

all cases it is defined as a linear combination of a number of ground motion 

attributes in the log scale. The intensity measure 휂𝐷 therefore depends on the 

ground motion attributes 𝑔, and a set of coefficients for each typology, represented 

by the typology index variable 𝓉: 

 휂𝐷 ← {𝑔, 𝓉}, (55) 

where the superscript 𝐷 is used to indicate that this is the (seismic) demand on the 

structure. Since the classification of a specific building as being member of a certain 

typology is often uncertain, the typology index 𝓉 is itself a categorical random 

variable. 

Depending on the seismic demand and the seismic capacity of the structure, 

various degrees of damage may occur. The fragility framework of Crowley & Pinho 

(2017) defines up to seven consecutive damage/collapse states for each typology. 

The first four states represent various degrees of damage, while the last three 

states represent various stages of building collapse.  

The thresholds between the states are defined by limit values (displacement limits) 

of the intensity measure. The state of the building corresponding to a limit value is 

referred to as a limit state. The set of six limit values is represented by the 

multivariate random variable 휂𝐶, where the superscript 𝐶 stands for capacity. The 

variable 휂𝐶 is parameterised by a set of six sequential reference values 휂ref
𝐶 , and a 

single aleatory (building-to-building) variability parameter 𝛽 that is common to all 

limit values: 

 휂𝐶 ⇜ {휂ref
𝐶 , 𝛽}. (56) 

All components of 휂𝐶, are perfectly correlated, such that the values never cross. 

The limit state reference values in turn depend on the typology index 𝓉 as well as 

the logic tree branch index 𝒷𝑓 that represents the epistemic uncertainty: 

 휂ref
𝐶 ← {𝓉,𝒷𝑓}, (57) 

while the building-to-building variability depends on the typology only: 

  𝛽 ← {𝓉}. (58) 

In the context of seismic risk analysis a typical example of a probability that is being 

assessed is the probability of exceeding a certain limit state. In the language of the 

probabilistic model of Section 2.1, the exceedance of limit state (𝑖) is an “event”, 

say,  휀EXC,𝑖, defined as: 

 휀EXC,𝑖: {𝜔 ∈ Ω |휂𝐷(𝜔) > 휂𝑖
𝐶(𝜔)}, (59) 

where 𝜔 and Ω represent all relevant random variables in the model. The event 

occurs when the seismic demand exceeds the capacity associated with limit state 𝑖. 
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 2.2.3.2 Consequence model 

The second part of the damage model is the consequence model, which describes 

the probability of a hypothetical person present inside or just outside a particular 

building that either exceeded a particular collapse limit state, or experienced a 

chimney collapse to die or survive. The consequence model of Crowley & Pinho 

(2017) conditions the mortality (probability of dying) on the damage state. Therefore 

we define the ordinal random variable 𝓊, representing the current damage/collapse 

state of the building by the value of the seismic demand relative to the capacity limit 

states. It therefore depends on both the seismic demand and the building capacity 

in terms of  the intensity measure: 

 𝓊 ⇜ {휂𝐷 , 휂𝐶}. (60) 

We next define the binary categorical consequence variable 𝜅, which represents the 

two possible states of the hypothetical person under consideration, being “alive” 

(𝜅∗) or “dead” (𝜅†), and has the following dependencies: 

 𝜅 ← {𝓉, 𝓊, ℓ, 𝒷𝑐 , 𝑔}, (61) 

among which the typology 𝓉, the collapse state 𝓊, and the epistemic uncertainty 

represented by the logic tree branching index 𝒷𝑐. In addition, the categorical 

variable ℓ represents the probability that the hypothetical person is either inside, or 

outside of the building. Finally, a direct dependence on surface ground motion 𝑔 is 

included, since the fatality due to chimney collapse is conditioned directly on the 

peak ground acceleration (PGA), which is included in 𝑔. 

The probabilistic event that represents the fatality of the hypothetical person, 휀FAT, 

can now be defined as: 

 휀FAT: {𝜔 ∈ Ω |𝜅(𝜔) = 𝜅†}, (62) 

where 𝜔 and Ω represent all relevant random variables in the model. 

 Integration 

In the previous three sections we have discussed the various (random) variables 

that play a role in the hazard and risk assessment. To quantify the rate or 

probability of some probabilistic event, according to equations (6), (8) and (21) in 

Chapter 2, the ultimate task is to integrate over the random variables of interest to 

that event.  

As we have seen, for example in (42), the total seismicity rate 𝜆 depends on a 

subset of the random variables. Therefore, it is important to include 𝜆 in the rate 

integral (8), e.g.: 

 ℛ(휀, 𝒮) = ∬∫𝟏𝜀(ω̃, 𝑥,𝑚)𝜆(ω̃, 𝒮)𝑑𝑃(ω̃|𝑥,𝑚)

Ω

𝑑𝑃(𝑥,𝑚)

𝑋,𝑀

, (63) 

where ω̃ represents all random variables of interest, except 𝑥 and 𝑚, and 𝒮 

represents the production parameters as in (42). The probability distributions of 𝑥 

and 𝑚 may also be relegated to the rate density function in space and magnitude 

𝜆𝑋𝑀, using (15), as in:  

 ℛ(휀, 𝒮) = ∫ ∬𝟏𝜀(ω̃, 𝑥,𝑚)𝜆𝑋𝑀(𝑥,𝑚, ω̃, 𝒮)𝑑𝑥𝑑𝑚

𝑋,𝑀

𝑑𝑃(ω̃)

Ω

. (64) 

From a practical point of view, the order of integration over the various random 

variables has a large influence on the computational efficiency. This further 

elaborated in Chapter 3. 
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 3 Implementation of the TNO Model Chain 

3.1 Seismological Source Model (V5) 

The Seismological Source Model (SSM) V5 is based on theory presented in Bourne 

& Oates (2017) and Bourne et al. (2018). The essential elements are discussed 

here together with their implementation in the Groningen model chain. 

 Input files 

Since the Seismological Source Model is the first component of the TNO Model 

Chain, all input files to the SSM are not produced by other chain elements and need 

to be parsed before they can be used. The parsing is described in this section. 

 

Earthquake catalogue 

The earthquakes that are observed in the Groningen area are recorded by the 

Royal Netherlands Meteorological Institute (Koninklijk Nederlands Meteorologisch 

Instituut, KNMI). The induced earthquake records are available in csv-format at link. 

This record contains the timing (date and time of day specified to hundreds of 

seconds), latitude and longitude (specified in decimal format to a thousandth of a 

degree), magnitude (specified with one decimal place) and depth (all induced 

earthquakes in the Groningen area are assumed to occur at 3.0 km depth). Other 

information in the record, such as municipality and PMF mode are not parsed.  

 

The date and time are transformed to a decimal format, taking into account that 

leap years are 366 days long. Example: 12:00:00 01-05-2016 (leap year): 

2016.33196721, 12:00:00 01-05-2017 (non-leap year): 2017.33013699.  

 

Latitude and longitude (WGS-84, EPSG:4326) are transformed to Rijksdriehoek 

(RD coordinates, EPSG:28992) using the pyproj library.  

 

The catalogue is filtered spatially based on whether it falls within the boundary of 

Groningen gas field (Groningen_field_outline.csv), temporally on whether it falls 

within the specified date range (date range is considered to be inclusive, e.g.: 1-jan-

2000 to 24-may-2010 means earthquakes occurring between 1-jan-2000 00:00:00 

up to 24-may-2010 23:59:59 will be included), and on minimum magnitude (if Mmin 

=1.5, earthquakes of M1.5 and above will be included). 

 

After these steps, the result is an array of earthquakes within the specified date 

range, with a magnitude of Mmin or higher, falling within the field outline. Each 

earthquake has a location (in RD coordinates), a timing (decimal year format) and a 

magnitude.  

 

Reservoir thickness, reservoir compressibility and pore pressure 

The relevant reservoir properties are provided as csv files, giving values for RDx, 

RDy and the respective reservoir thickness (in meters), compaction coefficient (in 

MPa-1), or pore pressure (in bar, with every column denoting the pore pressure for a 

single snapshot in time).  

 

http://cdn.knmi.nl/knmi/map/page/seismologie/all_induced.csv
https://pypi.org/project/pyproj/
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 Typically these files are given on a regular 2D grid, although this is not obligatory. If 

the data is supplied on a regular grid (constant and equal dx and dy between 

points), this grid is used to define a base grid. If the data is not on a regular grid, the 

base grid will be based on the extent of the data and a user-supplied dxdy (see 

Figure 6). Finally, the original data is linearly interpolated to the base grid. Grid 

points that cannot be interpolated (i.e. grid points that are outside the convex shape 

described by the original points), get assigned a value of NaN (not a number). Note 

that for data that was originally on a grid, this means that original grid points are 

maintained. 

Figure 6: Gridding procedure for data that is already on a grid (a) and data that is originally not on 

a grid (b). Top: original data locations. Middle: definition of base grid (green). Bottom: 

grid points that are assigned a numerical value (blue) are inside the convex hull of the 

original data, grid points that are assigned NaN (grey) are outside the convex hull of 

the original data. 

 

The pore pressure grid is provided in units of bar. It is translated to units of MPa by 

dividing each pore pressure value by 10. The pore pressure grid is then 

transformed into a pore pressure change grid by subtracting the pore pressure for 

each time step from the initial pore pressure (i.e. depletion is positive). 

 

When performing the modelling, it is important that the spatial extent and positions 

for the reservoir thickness, reservoir compressibility and pore pressure grids are 

identical (i.e. that the grid points for all these grids are the same). Since they are 

provided through different input files, this is not necessarily the case. After reading 

and gridding each file, a check is performed whether all grids are identical. If they 

are, no action is needed. If they are not: 

a) b)
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 • If the user provides a grid definition, all gridded data is remapped to this 

grid, using linear interpolation. (N.B. other interpolation methods have been 

tested, with no significant impact on the resulting source distribution. The 

supplied input files are relatively smooth, resulting in negligible differences 

due to choice of interpolation method). 

• If the user does not provide a grid, the grid definition of the pore pressure 

grid is taken as the base grid. All other grids are remapped to this grid, 

using linear interpolation. (N.B. the choice for the pore pressure grid as 

base grid is arbitrary). 

Field outline 

The field outline (the projection to the earth’s surface of the pre-production position 

of the gas-water contact) is provided as a sequential set of RDx, RDy coordinates. 

These points are stored as provided without requiring any parsing. 

 

Fault data 

Fault data is provided as an sqlite3/csv-table. Each row describes a point in space 

where a fault has been interpreted at reservoir level. Beside fault location, the 

following properties are supplied and stored: a number describing which fault the 

point belongs to; a number describing it’s position within the fault; the offset of the 

fault; the thickness of two reservoir layers in the footwall; the thickness of two 

reservoir layers in the hanging wall (four thickness values in total). Other properties 

(such as dip and dip azimuth) are not used in the model. 

 

The data is read into the model and the following properties are calculated at each 

point: 

• Average thickness (𝑡𝑎𝑣𝑔): arithmetic mean of the four thickness values 

supplied in the input file. 

• Throw/thickness ratio: offset/thickness. 

• Representative length (𝑙𝑟𝑒𝑝𝑟): each point represents a certain length (along 

strike) of fault, for which we assume that the properties of the point are 

representative. Points that are closer together have a smaller 

representative length per point than points that are further apart. The 

procedure for determining the representative length per point (see also 

Figure 7) is: 

o Determine the midpoints between the original points making up the 

fault. 

o Find the distance from each original point to both of its neighboring 

midpoints. 

o Assign each original point the sum of the distance to both of its 

neighboring midpoints (the ends of the faults only have one 

neighboring mid-point, and are assigned the distance to that single 

neighboring mid-point). 

o Repeat this process for each fault. 
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Figure 7: Visual representation of local fault length calculation. In the right-most sub-figure, the 

representative fault length for each point is colored . 

 

 

 Input parameters 

 

The input parameters described here are used to configure the SSM. Here, their 

keywords and format are described. Their purpose will be described in the 

´Implementation’ section, whenever the parameter in question becomes relevant. 

All input parameters are supplied in a single .json file. 
{ 

  "base_dir": <string, full path to directory containing all 

input files>, 

  "eq_file": <string, name of the input file>, 

  "outline_file": <string, name of the input file>, 

  "daterange_training": <list, [yyyymmdd (start), yyyymmdd 

(end)]>, 

  "daterange_testing": <list, [yyyymmdd (start), yyyymmdd 

(end)]>, 

  "forecast_period":<list, [yyyy (start), yyyy (end)]>, 

  "dsm":{ 

      "type": <string, name of the model>, 

"compr_file": <string, name of the input file>, 

"fault_file": <string, name of the input file>, 

 "thickness_file": <string, name of the input file>, 

"press_file": <string, name of the input file>, 

}, 

  "srm":{ 

  "type": <string, name of the model>,, 

  "subtype": <string, name of the model>, 

  "bval_model": <string, name of the model> 

 } 

} 
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  Implementation 

 

The SSM performs two major tasks:  
1) Training (or calibrating) the model on historic seismicity data (i.e. obtaining 

the posterior distribution of model parameters). 

2) Creating a forecast of future seismicity (i.e. integrating the posterior 

distribution of model parameters and convolving it with a forecast of the 

pore pressures). 

For both tasks, the SSM should be able to create a forecast of seismicity, given a 

set of input files and model parameters. For computational efficiency and flexibility, 

the SSM is split into two models: 

 
1) The Dynamic Subsurface Model (DSM). This model calculates a physical 

subsurface property (e.g. Coulomb Stress) from the input files and input 

parameters. 

2) The Seismicity Rate Model (SRM). This model calculates the expected rate 

of events from the output of the DSM (e.g. Coulomb Stress) and additional 

input parameters. Again, two sub-models can be distinguished: 

a. The activity rate model, describing the rate of events as a function 

of a physical subsurface property and model parameters. 

b. The magnitude model, describing the relative probability of a given 

earthquake having a certain magnitude as a function of a physical 

subsurface property and model parameters. 

Training 

During the training phase, a Bayesian framework is applied to assign a likelihood 

score to each set of model parameters. Since during training, the activity rate model 

and the magnitude model are independent of each other (see also Section 2.2.1.2), 

but both models rely on the DSM, two independent posterior likelihood defined: first,  

𝐿𝐿𝐴𝑅(𝛾, 휃, 휁): the log-likelihood function depending on a combination of DSM 

covariate conditioning parameters (𝛾), main-shock activity rate parameters (휃) and 

ETAS clustering model parameters (𝜻), and second 𝐿𝐿𝑀(𝛾, 𝜓),  the log-likelihood 

function depending on a combination of DSM covariate conditioning parameters 

and magnitude parameters (𝜓). 

For any activity rate model (a model describing the number of events per unit time, 

independent of magnitude), the log-likelihood is given by: 

𝐿𝐿𝐴𝑅(𝛾, 휃, 휁) = − ∫ ∫𝜆𝑋(𝑥, 𝑡)
 

𝑆

𝑑𝑆𝑑𝑡
 

𝑡

+ ∑log(𝜆𝑋(𝑥𝑖 , 𝑡𝑖)),

𝑛

𝑖=1

 

where 𝜆𝑋(𝒙, 𝑡) is the spatio-temporal event rate density (units: number of events per 

unit time per unit area, e.g. m-2year-1), 𝑛 is the number of observed events in the 

time period under consideration and 𝜆𝑋(𝒙𝑖 , 𝑡𝑖) is the event rate density at the time-

space location of an observed event.  

 

For training we use the observation-conditioned total seismicity rate density 𝜆𝑋
obs of 

Equation (31). The ETAS model functions 𝑓𝑇(𝑡) and 𝑓𝑅(𝑟) are the probability density 

function for temporal and spatial triggering defined as: 

𝑓𝑇(𝑡) =
𝑝 − 1

𝑐
 (
𝑡

𝑐
+ 1)

−𝑝

, 

𝑓𝑅(𝑟) =
𝑞 − 1

𝜋𝑑
 (
𝑟2

𝑑
+ 1)

−𝑞

, 
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 where 𝑐, 𝑝 respectively are the characteristic time and temporal power-law exponent 

parameters, defining the speed at which the aftershock rate decays over time. Also, 

𝑑, 𝑞 respectively are the characteristic area and spatial power-law exponent 

parameters of the ETAS model, defining the speed at which the aftershock rate 

decays spatially. 

 

For any b-value model (a model describing the slope of the Gutenberg-Richter 

frequency magnitude distribution), the log-likelihood is given by: 

𝐿𝐿𝑀(𝛾, 𝜓) =  ∑log[𝑏(𝑥𝑖 , 𝑡𝑖) log(10)] −  ∑𝑏(𝑥𝑖 , 𝑡𝑖) log(10) (𝑚𝑖 −𝑚0),

𝑛

𝑖=1

𝑛

𝑖=1

(10) 

where 𝑏(𝑥𝒊, 𝑡𝑖) is the b-value at the space-time location of the 𝑖𝑡ℎ event and 𝑚𝑖 is 

the magnitude of the 𝑖𝑡ℎ event.  

 

Box 1 outlines the numerical procedures followed in the implementation of the SSM 

V5 DSM. Box 2 outlines the training of the activity rate model and the b-value 

model. 
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BOX 1  IMPLEMENTATION OF SSM V5 DYNAMIC SUBSURFACE MODEL 

DSM: Calculating smoothed incremental Coulomb stress change from input files (pore 
pressure change, reservoir thickness, reservoir compressibility, fault geometry) and model 
parameters 𝛾 = {𝑟𝑚𝑎𝑥, 𝜎}. 
 
1. Obtain the topographic gradient Γ(𝒙) and fault density 𝜌(𝒙) on the base grid. To do so, 

only the points in the fault data which have a throw/thickness ratio 𝑟 ≤ 𝑟𝑚𝑎𝑥 are 
considered.  

a. These points are assigned to the nearest base grid point, weighted by the fault 

area 𝐴 = 𝑙𝑟𝑒𝑝𝑟𝑡𝑎𝑣𝑔 to obtain the fault density grid 𝜌(𝒙). 

b. These same points are assigned to the nearest base grid point, weighted by 

offset × 𝑙𝑟𝑒𝑝𝑟𝑡𝑎𝑣𝑔 to obtain the grid Γ𝜌(𝒙). 

c. The topographic gradient is obtained by Γ(𝒙) =
Γ𝜌(𝒙)

𝜌(𝒙)
 . 

2. Obtain the elastic modulus grid 𝐻(𝒙) by: 

𝐻(𝒙) = (𝐻𝑠
−1 + 𝐶𝑚(𝒙))

−1, 
where 𝐻𝑠 = 10−5.3 and 𝐶𝑚(𝒙) is the reservoir compressibility grid. 

3. Calculate the scalar value 𝛾 =
1−2𝜈

2−2𝜈
, where 𝜈 = 0.2 is the Poisson ratio. Note that this 

results in a scalar factor on the incremental Coulomb stress change and therefore does 

not impact the seismicity forecast after model training. It is included for completeness 

only. 

4. Calculate the vertical strain grid 𝜖𝑧𝑧 (𝒙, 𝑡) = 𝑑𝑃(𝒙, 𝑡)𝐶𝑚(𝒙), where 𝑑𝑃(𝒙, 𝑡) is the pore 

pressure change grid. 

5. Calculate the (spatio-temporal) incremental Coulomb stress change Δ𝐶(𝒙, 𝑡): 

Δ𝐶(𝒙, 𝑡) = 𝛾𝐻(𝒙)𝜖𝑧𝑧(𝒙, 𝑡)Γ(𝒙). 
6. Set any negative and NaN values in Δ𝐶(𝒙, 𝑡) to zero. 

7. Obtain the smoothed incremental Coulomb stress change and smoothed fault density 

by applying a Gaussian kernel with characteristic length scale 𝜎 to the spatial (𝒙) 

dimensions of the Δ𝐶(𝒙, 𝑡) grid and the 𝜌(𝒙) grid. This is implemented using 

scipy.ndimage.gaussian_filter with sigma =
𝜎

𝑑𝑥
, where 𝑑𝑥 is the grid spacing of the 

Δ𝐶(𝒙, 𝑡) and 𝜌(𝒙) grid and mode = "constant". 

  

  

  

  

  

  

  

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html
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BOX 2  IMPLEMENTATION OF SSM V5 MODEL TRAINING 

SRM activity rate V5 training: Obtain log-likelihood for parameter vectors 𝛾 = {𝑟𝑚𝑎𝑥, 𝜎}, and 
휃 = {휃0, 휃1}, and 휁 = {𝐾, 𝑎}, and covariate Δ𝐶 
 
1. Obtain the smoothed incremental Coulomb stress change Δ𝐶(𝒙, 𝑡) as described in Box 

1, using parameters {𝑟𝑚𝑎𝑥, 𝜎}. 

2. Obtain Δ𝐶(𝒙, 𝑡𝑠𝑡𝑎𝑟𝑡), Δ𝐶(𝒙, 𝑡𝑒𝑛𝑑), Δ𝐶(𝒙𝑖, 𝑡𝑖 ), Δ�̇�(𝒙𝑖, 𝑡𝑖 ) and 𝜌(𝒙𝑖) through spatial 

nearest neighbor interpolation and cubic spline temporal interpolation 

(scipy.interpolate.CubicSpline, bc =  “natural”).  Δ�̇�(𝒙𝑖, 𝑡𝑖 ) is the time-derivative of 

Δ𝐶(𝒙𝑖 , 𝑡𝑖 ) and is obtained by using the scipy.interpolate.CubicSpline functionality nu =

1.  

3. Obtain ∫ ∫ 𝜆(𝒙, 𝑡)
 

𝑆
𝑑𝑆𝑑𝑡

 

𝑡
 numerically: 𝐴 = Δ𝑆∑  𝒙 𝑒𝜃0𝜌(𝒙)(𝑒𝜃1Δ𝐶(𝒙,𝑡𝑒𝑛𝑑) − 𝑒𝜃1Δ𝐶(𝒙,𝑡𝑠𝑡𝑎𝑟𝑡)), 

with Δ𝑆 the surface area of a grid cell. 

4. Obtain 𝐾∑ 𝑒𝑎(𝑀𝑖−𝑀0)𝑛
𝑖=1  numerically: 𝐵 = 𝐾∑ [𝑒𝑎(𝑀𝑖−𝑀0)].𝑖  

5. Obtain 𝜆(𝒙𝑖, 𝑡𝑖) numerically: 𝐶𝑖 =  𝜌(𝒙𝑖)휃1Δ�̇�(𝒙𝑖, 𝑡𝑖 )𝑒
𝜃0+𝜃1Δ𝐶(𝒙𝑖,𝑡𝑖 ). 

6. Obtain ∑ 𝐾𝑒𝑎(𝑀𝑗−𝑀𝑚𝑖𝑛) (
𝑝−1

𝑐
(
𝑡𝑖−𝑡𝑗

𝑐
+ 1)

−𝑝
)(

𝑞−1

𝜋𝑑
(
‖𝒙𝑖−𝒙𝑗‖

2

𝑑
+ 1)

−𝑞

)𝑖−1
𝑗=1  numerically:  

𝐷𝑖 =
𝑝 − 1

𝑐

𝑞 − 1

𝜋𝑑
𝐾 ∑ [(

1 + 𝛿𝑡𝑖𝑗

𝑐
)

−𝑝

(
1 + 𝛿𝑟𝑖𝑗

𝑑
)

−𝑞

𝑒𝑎(𝑀𝑖𝑗)]
𝑗

, 

where 𝑝 = 1.35, 𝑞 = 3.16, 𝑑 = 4 × 106 m2 , 𝑐 = 0.3 days.  𝛿𝑡𝑖𝑗, 𝛿𝑟𝑖𝑗, and 𝑀𝑖𝑗  are lower 

triangle matrices of inter-event time, inter-event distance and normalized event 
magnitude (𝑀 −𝑀0). E.g.: 

𝛿𝑡𝑖𝑗 = (

0
𝑡12

0
⋱

0 0
0 0

⋮ 𝑡𝑖𝑗 ⋱ 0
𝑡1𝑛 𝑡2𝑛 … 0

). 

 
7. Obtain the log-likelihood numerically: 𝐿𝐿𝐴𝑅(𝛾, 휃, 휁) =  −𝐴 − 𝐵 + ∑ log(𝐶𝑖 + 𝐷𝑖) .𝑖  

 
SRM b-value model V5 training: Obtain log-likelihood for parameter vectors 𝛾 = {𝑟𝑚𝑎𝑥, 𝜎} 
and 𝜓 = {𝛽0, 𝐶0, 𝑛}. 
 
1. Obtain the smoothed incremental Coulomb stress change Δ𝐶(𝒙, 𝑡) as described in Box 

1, using parameters {𝑟𝑚𝑎𝑥, 𝜎}. 

2. Obtain Δ𝐶(𝒙𝑖, 𝑡𝑖 ) through spatial nearest neighbor interpolation and cubic spline 

temporal interpolation (scipy.interpolate.CubicSpline, bc =  “natural”).  

3. Obtain 𝑏(𝒙𝑖, 𝑡𝑖) numerically: 𝑏𝑖 = 𝛽0 + (
Δ𝐶(𝒙𝑖,𝑡𝑖 )

𝐶0
)
−𝑛
. 

4. Obtain 𝑏𝑖
∗ = log(10) 𝑏𝑖. 

5. Obtain the log-likelihood numerically:  

𝐿𝐿𝑀(𝛾, 𝜓) =  ∑ log[𝑏𝑖
∗]

𝑖
− ∑ [𝑏𝑖

∗ × (𝑚𝑖 −𝑚0 )]
𝑖

.  

N.B.: In order to calculate the log-likelihood of a set of model parameters, the forward model does 

not have to be evaluated. The only information about the forward model that is required is: 

• The number of events in the forward model (i.e. ∫ ∫ 𝜆𝑋(𝒙, 𝑡)
 

𝑆
𝑑𝑆𝑑𝑡

 

𝑡
).  

• The smoothed incremental Coulomb stress rate at the space-time location of the 

observed events.  

• The time-derivative of the smoothed incremental Coulomb stress rate at the space-

time location of the observed events.  

 
 

https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.interpolate.CubicSpline.html
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.interpolate.CubicSpline.html
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.interpolate.CubicSpline.html
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 Forecasting 

The training described in Box 2 is performed for a range of model parameters 

{𝑟𝑚𝑎𝑥 , 𝜎, 휃0, 휃1, 𝐾, 𝑎} and{𝑟𝑚𝑎𝑥 , 𝜎, 𝛽0, 𝐶0, 𝑛}. Each parameter is discretized by 

supplying a range and step size, a 6D (activity rate) and 5D (b-value model) log-

likelihood matrix can be calculated. These matrices can be transformed to 

probability mass functions (which sum to 1): 

𝑃(𝒂𝑖) =
𝑒𝐿𝐿(𝒂𝑖)

∑ 𝑒𝑚
𝑖

𝐿𝐿(𝒂𝑖)
, 

where 𝒂𝑖 is a single parameter vector (e.g. one scalar value for each parameter), 

𝐿𝐿(𝒂𝑖) is the log-likelihood of that single parameter vector, and 𝑚 is the number of 

members of the total n-dimensional grid. For very large negative values of 𝐿𝐿(𝒂𝑖) 

(e.g. less than −1000), typical computers will return 𝑒−1000 = 0. To avoid this, the 

probability mass function is calculated as: 

𝑃(𝒂𝑖) =
𝑒𝐿𝐿(𝒂𝑖)−max(𝐿𝐿(𝒂))

∑ 𝑒𝑚
𝑖

𝐿𝐿(𝒂𝑖)−max(𝐿𝐿(𝒂))
. 

Once the probability mass function (the posterior distribution) of model parameters 

is known, these can be used to calculate a forecast. The most naïve way to 

implement this is by calculating the forecast for each individual combination of 

model parameters, and weighting each model forecast by the probability mass of 

that combination of model parameters. The advantage of this method is that it’s 

simple to implement and that it works for any kind of model. The downside is that 

it’s computationally intensive to calculate for a large matrix of model parameters, 

which typically has ~107 members for the activity rate model and ~106 members for 

the b-value model. This would result in ~1013 combinations of model parameters to 

evaluate. 

 

Since SSM V5 is a film-rate model3, it can be implemented in a more efficient 

manner. 

 

For a given smoothed incremental Coulomb Stress change4, the activity rate 

density is given by: 

𝜆𝑋(𝒙, 𝑡) = 𝜌(𝒙)휃1Δ�̇�(𝒙, 𝑡)𝑒
𝜃0+𝜃1Δ𝐶(𝒙,𝑡). 

The total number of events since the beginning of production: 

Λ𝑋(𝒙, 𝑡0) = ∫ 𝜆𝑋(𝒙, 𝑡)
𝑡0

0

𝑑𝑡 = 𝜌(𝒙)𝑒0
𝜃(𝑒𝜃1Δ𝐶(𝒙,𝑡0) − 1). 

This can be differentiated with respect to compaction to obtain an event density per 

unit of smoothed incremental Coulomb Stress change: 
𝑑Λ

𝑑Δ𝐶
(Δ𝐶, 𝜽) = 휃1𝑒

𝜃0+𝜃1Δ𝐶 , 

where 𝜽 = 휃0, 휃1. 

 

And the mean posterior: 
𝑑Λ𝐷

𝑑Δ𝐶
(Δ𝐶) =  ∫

𝑑Λ

𝑑Δ𝐶
(Δ𝐶, 𝜽)

 

Ω𝜽

𝑓𝜃(𝜽)𝑑𝜽, 

with 𝑓𝜃(𝜽) the joint posterior PDF of the model parameters and Ω𝜽 its domain.  

 
3 The activity rate only depends on the current value of the incremental Coulomb stress, and not 

on the history. 
4 Note that the smoothed incremental Coulomb Stress change depends on model parameters 

{𝑟𝑚𝑎𝑥 , 𝜎}. The solution to this slight complication will be discussed in the description of the 

numerical implementation. For now, we discuss the case of a single smoothed incremental 

Coulomb Stress change realization. 
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To determine the distribution of the events over magnitudes, the Magnitude 

Frequency Distribution (MFD) needs to be taken into account. This is influenced by 

the b-value, which gives the slope of the MFD. The b-value, in turn, depends on the 

smoothed incremental Coulomb Stress change and the model parameters 

𝝍 = {𝛽0, 𝐶0, 𝑛}. 

𝐹𝑀̅̅̅̅ (𝑚, Δ𝐶,𝝍) =

{
 
 

 
 1 𝑚 ≤ 𝑚𝑚𝑖𝑛

(1 − 
1 − 10𝑏(Δ𝐶,𝝍)(𝑚−𝑀𝑚𝑖𝑛) 

1 − 10𝑏(Δ𝐶,𝝍)(𝑀𝑚𝑎𝑥−𝑀𝑚𝑖𝑛)
) 𝑚𝑚𝑖𝑛  ≤ 𝑚 ≤ 𝑚𝑚𝑎𝑥

0 𝑚 > 𝑚𝑚𝑎𝑥

. 

 

And the mean posterior: 

𝐹𝑀̅̅̅̅
𝐷
(𝑚, Δ𝐶) =  ∫ 𝐹𝑀̅̅̅̅ (𝑚, Δ𝐶,𝝍)

 

Ω𝝍

𝑓𝜓(𝝍)𝑑𝝍, 

with 𝑓𝜓(𝝍) the joint posterior PDF of the model parameters and Ω𝝍 its domain.  

Combining: 

𝑑ΛM
𝐷

𝑑Δ𝐶
(𝑚, Δ𝐶) =

𝑑Λ𝐷

𝑑Δ𝐶
(Δ𝐶)𝐹𝑀̅̅̅̅

𝐷
(𝑚, Δ𝐶).  

And integrating with respect to Δ𝐶: 

Λ𝑀
𝐷 (𝑚, Δ𝐶) =  ∫

𝑑Λ𝑀
𝐷

𝑑Δ𝐶
(𝑚, Δ𝐶) 𝑑Δ𝐶. 

Spatio-temporal clustering according to ETAS will be randomly located in space and 

time. The effective increase in activity rate is therefore distributed. Assuming the 

background rate is smooth in time and space (smooth compared to the aftershock 

influence length scales), the effects of aftershocks can be represented by the 

enhanced productivity only. The aftershocks can be seen as a sequence of 

generations, each generation increasing the previous generation by a constant 

factor. The effective productivity factor 𝛤 can be calculated according to Section 

2.2.1.2.  

Combining: 

𝑑 Λ⏞𝑀
𝐷

𝑑𝑐
(𝑚, Δ𝐶)= ∫ ∬𝛤(Δ𝐶, 𝜻, 𝝍)

𝑑Λ

𝑑Δ𝐶
(Δ𝐶, 𝜽)𝐹𝑀̅̅̅̅ (𝑚, Δ𝐶,𝝍)𝑓𝜽𝜻(𝜽 , 𝜻)𝑓𝝍(𝝍)𝑑𝜽𝑑𝜻𝑑𝝍.

𝛺𝜽𝜻𝛺𝝍

 

And finally, for a given smoothed increment Coulomb stress interval Δ𝐶0 → Δ𝐶1: 

Λ⏞𝑀
𝐷
(𝑚, Δ𝐶1)-Λ⏞𝑀

𝐷
(𝑚, Δ𝐶0)

= ∫ ∫ ∬𝛤(Δ𝐶, 𝜻, 𝝍)
𝑑Λ

𝑑Δ𝐶
(Δ𝐶, 𝜽)𝐹𝑀̅̅̅̅ (𝑚, Δ𝐶,𝝍)𝑓𝜽𝜻(𝜽 , 𝜻)𝑓𝝍(𝝍)𝑑𝜽𝑑𝜻𝑑𝝍𝑑Δ𝐶.

𝛺𝜽𝜻𝛺𝝍

Δ𝐶1

Δ𝐶0

 

For a given posterior distribution of activity rate parameters and b-value model 
parameters (i.e. 𝑓𝜽𝜻(𝜽 , 𝜻) and 𝑓𝝍(𝝍)) this expression can be tabulated for ranges of 

values of 𝑚 and Δ𝐶. Such a lookup table can then be convolved with a spatio-

temporal smoothed incremental Coulomb Stress change realization to obtain a 

mean posterior forecast of seismicity. This should be done for all logic tree 

assumptions (prior distributions) of 𝑀𝑚𝑎𝑥 and all smoothed incremental Coulomb 

Stress change realizations (which depend on DSM parameters {𝑟𝑚𝑎𝑥 , 𝜎}).  

 

Note that this expression, with effective aftershock productivity, is to be used for 

forecasting only, not for calibration. Calibration requires the full ETAS formulation 

since the likelihood expression depends on the observed events. 
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 In Box 3, the implementation of the forecasting is described. This results in a 

forecast/hindcast of seismicity for each year that pore pressures are provided. If the 

pore pressures contain a forecast into the future, the resulting seismicity forecast is 

also a forecast into the future. This seismicity forecast is a 5D matrix:  

• For each value of 𝑀𝑚𝑎𝑥 (one dimensional; values from logic tree). 

• For each time step (one dimensional; typical time step is 1 year). 

• For every spatial grid cell (two dimensional; RDx, RDy). 

• A Complementary Cumulative Density Function (CCDF, or survival 

function) over the magnitude dimension (one dimensional). 

Example: 

Pick a value of 𝑀𝑚𝑎𝑥 = 6.0. Pick a time step (2010), pick a set of spatial coordinates 

(248000.0; 586500.0). You now get a one-dimensional array, where each value 

gives the expected number of events of magnitude equal or higher than 𝑚, 

assuming an 𝑀𝑚𝑎𝑥 of 6.0, in 2010 in a 500x500m grid cell centered around 

248000.0; 586500.0. 

 

𝑚 1.45 1.50 1.55 1.60 1.65 1.70 1.75 … 6.00 

Number 

of events 

𝑀 ≥ 𝑚 

0.00306 0.00274 0.00245 0.00220 0.00197 0.00177 0.00158 … 0.000 
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BOX 3  IMPLEMENTATION OF SSM V5 FORECASTING 

1. Discretize and transform the likelihood function 𝐿𝐿𝐴𝑅(𝑟𝑚𝑎𝑥 , 𝜎, 휃0, 휃1, 𝐾, 𝑎) into a probability mass 

function through: 𝑃(𝒂𝑖) = 𝑒𝐿𝐿(𝒂𝑖)−max(𝐿𝐿(𝒂))/ ∑ 𝑒𝑚
𝑖

𝐿𝐿(𝒂𝑖)−max(𝐿𝐿(𝒂))
. 

2. Sum 𝑃(𝒂𝑖) over the axes of SRM parameters  {휃0, 휃1, 𝐾, 𝑎} to obtain 𝑃(𝑟𝑚𝑎𝑥 , 𝜎). 

3. For each member of {𝑟𝑚𝑎𝑥 , 𝜎}, obtain the annual event count in spatio-temporal-magnitude bin 

for each value of 𝑀𝑚𝑎𝑥 : 𝜆(𝒙, 𝑡,𝑚,𝑀𝑚𝑎𝑥):  

a. Obtain Δ𝐶(𝒙, 𝑡) and 𝜌(𝒙) and as described in Box 1. 

b. Obtain 𝑃(휃0, 휃1, 𝐾, 𝑎 | 𝑟𝑚𝑎𝑥 , 𝜎) and  𝑃(𝛽0, 𝐶0, 𝑛 | 𝑟𝑚𝑎𝑥 , 𝜎) by repeating Step 1 for the selected 

vector {𝑟𝑚𝑎𝑥 , 𝜎}. 

c. For each value of 𝑀𝑚𝑎𝑥: 

i. Set up a representative vector of Δ𝐶𝑏𝑖𝑛 values (bin edges) and associated Δ𝐶𝑐𝑒𝑛 

(bin centers). Set up a representative vector of magnitude value 𝑚𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 . 

ii. Create a table of b-values 𝑏𝑣𝑎𝑙(Δ𝐶𝑐𝑒𝑛, 𝛽0, 𝐶0, 𝑛).  

iii. Set up a representative table of b-values 𝑏𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 based on the b-values in 𝑏𝑣𝑎𝑙. 

iv. Convolve the table 𝑏𝑣𝑎𝑙(Δ𝐶𝑐𝑒𝑛, 𝛽0, 𝐶0, 𝑛) with 𝑃(𝛽0, 𝐶0, 𝑛) to obtain a probability 

mass function (PMF) of b-value as a function of Δ𝐶𝑐𝑒𝑛 (i.e. one b-value PMF 

defined on 𝑏𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 for each value of Δ𝐶𝑐𝑒𝑛): 𝑏𝑝𝑚𝑓(𝑏𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 , Δ𝐶𝑐𝑒𝑛). 

v. Obtain the Complementary Cumulative Density Function (CCDF, or survival 

function) 𝐹𝑀(𝑏𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ,𝑚𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒) and the numerical derivative 

𝑓𝑀(𝑏𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ,𝑚𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒). E.g. 

𝑓𝑀(1.0, 2.3) = 𝐹𝑀(1.0, 2.25) − 𝐹𝑀(1.0, 2.35). 

vi. Obtain aftershock productivity factor 𝜉(𝐾, 𝑎, 𝑏𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ) = ∑ 𝐾𝑒𝑎(𝑚−𝑀𝑚𝑖𝑛) ×𝑚

𝑓𝑀(𝑚) for each combination of {𝐾, 𝑎, 𝑏𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒}.   

vii. Obtain effective aftershock productivity Γ (𝐾, 𝑎, 𝑏𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ) =

min (
1

1−(𝐾,𝑎,𝑏𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ) 
; 10) (Capped at 10 to prevent numerical problems). 

viii. Obtain 
𝑑Λ

𝑑Δ𝐶
(Δ𝐶𝑐𝑒𝑛, 𝜽) = 휃1𝑒

𝜃0+𝜃1Δ𝐶𝑐𝑒𝑛  each combination of {휃0, 휃1, Δ𝐶𝑐𝑒𝑛}.   

ix. Obtain lookup table Λ⏞𝑀
𝐷
(𝑚𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 , Δ𝐶𝑏𝑖𝑛) =

[∑ [𝑑Δ𝐶 ×Δ𝐶
0 ∑ 𝑏𝑝𝑚𝑓(𝑏𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 , Δ𝐶𝑐𝑒𝑛)

𝑑Λ

𝑑Δ𝐶
(Δ𝐶𝑐𝑒𝑛, 휃0, 휃1)(𝑏𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒,𝜃0,𝜃1,𝐾,𝑎) ×

𝑅(𝐾, 𝑎, 𝑏𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 )𝐹𝑀(𝑏𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ,𝑚𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒)𝑃(휃0, 휃1, 𝐾, 𝑎)].   

Note that this is effectively a mid-point integration scheme (by obtaining the 
values up to the bin edge by using the bin centers). 

x. Obtain the cumulative event density grid Λscaled(𝒙, 𝑡,𝑚) by performing a linear 

interpolation of the lookup table obtained in Step 3.a.ix. for each grid point of  

Δ𝐶(𝒙, 𝑡) (obtained in Step 3.a.). That is: for each value of Δ𝐶, obtain a distribution 

of events over 𝑚𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 . 

xi. Obtain = Λ(𝒙, 𝑡, 𝑚) = 𝑑𝑥 × 𝑑𝑦 × 𝜌(𝒙) × Λscaled(𝒙, 𝑡,𝑚).  

xii. Finally, obtain 𝜆(𝒙, 𝑡,𝑚) by numerical differentiation of Λ(𝒙, 𝑡,𝑚). E.g: 

Λ(𝒙, 2010,𝑚) = 𝜆(𝒙, 2011.01.01,𝑚) − 𝜆(𝒙, 2010.01.01,𝑚). 
4. Repeat Step 3 for each member of {𝑟𝑚𝑎𝑥 , 𝜎} and weight the resulting forecast by 𝑃(𝑟𝑚𝑎𝑥 , 𝜎) to 

obtain 𝜆𝐷(𝒙, 𝑡,𝑚,𝑀𝑚𝑎𝑥). 
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 Rupture model 

The 5D seismicity forecast described above gives a hypocenter distribution. 

However, earthquakes occur on planes (or lines in map view). To capture this, the 

SSM V5 contains a rupture model. Note that this model is not trained on data, but 

rather informed by geological knowledge of the Groningen gas field and 

geophysical knowledge of earthquake ruptures in general. The rupture model for 

Groningen is described in Bourne & Oates (2018). In the TNO Model Chain, it is 

implemented in two steps: 
1) Calculation of a lookup table, which gives a probability mass function of 

distance to a rupture plane, given a distance to a hypocenter, a magnitude 

and an azimuth (angle with respect to North). 

2) Convolution of this lookup table with the hypocenter distribution and a 

spatial 2D grid of virtual observation points at the earth’s surface.  

The final result of this twostep approach (implementation discussed in Box 4 and 

Box 5) is a 5D matrix: 

• For each value of 𝑀𝑚𝑎𝑥 (one dimensional; values from logic tree). 

• For each time step (one dimensional; typical time step is 1 year). 

• For every spatial observation point (one dimensional; unique combinations 

of {RDx, RDy}). 

• For every magnitude bin (one dimensional; typically in bins of width 0.1, 

centered around 1.5, 1.6, 1.7, …). 

• The number of events in a distance bin (one dimensional). 

Note that this matrix no longer uses a CCDF in the magnitude dimension. A way to 

visualize this matrix is as follows: 
1) Pick a value for 𝑀𝑚𝑎𝑥 from the logic tree. 

2) On January first of a year (e.g. 2020), go stand on a point in the Groningen 

earthquake area. 

3) For all of 2020, whenever an earthquake occurs, make a mark in the box 

corresponding to its distance (to the rupture plane) and its magnitude: 

 

 
If you repeat this exercise for all logic tree values of 𝑀𝑚𝑎𝑥, for every timestep and 

for all observation points, you obtain the 5D matrix that is produced by the rupture 

model. The only difference is that the matrix produced by the rupture model 

contains expectation values, rather than observations. 

 

𝑀𝑎𝑔𝑛𝑖𝑡 𝑑𝑒

𝐷
𝑖𝑠
𝑡𝑎
𝑛
𝑐𝑒
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 The output of the rupture model is considered to be the final output of the SSM, 

which serves as input for the GMM. 

 

  

BOX 4  IMPLEMENTATION OF SSM V5 RUPTURE MODEL LOOKUP TABLE 

Note: The rupture model as described in Bourne & Oates (2018) is based on faults having a mean 

strike, with a certain variance. Here, we describe the rupture model based on ‘relative angle’, which 

is geometrically identical, but numerically more advantageous in the numerical integration scheme 

(see Figure 4). 

1. Define a vector of magnitudes 𝒎 for which to perform the calculation (e.g.: 1.4, 

1.5,…,7.1). 

2. Define a vector of rupture plane lengths 𝒍 (e.g. 1m, 5m, 10m, 50m, 100m,….,100km). 

3. For each magnitude, calculate the 1D PMF of the rupture length 𝑃(𝑙|𝑚), based on the 

model parameters {𝑐, 𝑑, 𝐿, 𝑎1, 𝑏1, 𝑎2, 𝑏2, 𝜎𝐿}. 

4. Define a vector of normalized positions of the hypocenter on the rupture plane 𝒏 

[0.0,…,1.0] and its associated PMF 𝑃(𝑛) based on a uniform distribution.  

5. For each magnitude, calculate the 2D PMF of the rupture length and normalized 

hypocenter position on the rupture plane (sums to 1.0 for each magnitude) 𝑃(𝑙, 𝑛|𝑚). 

6. Define a vector of relative angles 𝝓, and a vector of hypocentral distances 𝒓ℎ𝑦𝑝. 

7. Calculate equivalent epicentral distances based on a constant rupture depth 𝑑𝑟𝑢𝑝: 

𝒓𝑒𝑝𝑖 = √(𝒓ℎ𝑦𝑝)2 − 𝑑𝑟𝑢𝑝
2 . 

8. For each relative angle 𝜙𝑖: 

a. Calculate normalized epicentral distances �̃�𝑗𝑘
𝑒𝑝𝑖

=
𝒓𝑗
𝑒𝑝𝑖

𝒍𝑘
.  

b. Calculate the crossline component �̃�𝑗𝑘
𝑒𝑝𝑖

⊥
= sin(𝜙𝑖) �̃�𝑗𝑘

𝑒𝑝𝑖
. 

c. Calculate the clipped inline component  �̃�𝑗𝑘𝑙
𝑒𝑝𝑖

∥
= max(cos(𝜙𝑖) �̃�𝑗𝑘

𝑒𝑝𝑖
− 𝒏𝑙; 0.0). 

d. Calculate the surface projection of the relative rupture plane distance: 

(𝒓∗
𝑟𝑢𝑝

)𝑗𝑘𝑙 = √𝒍𝑘
2 × (�̃�𝑗𝑘𝑙

𝑒𝑝𝑖

∥

2
+ �̃�𝑗𝑘𝑙

𝑒𝑝𝑖

⊥

2
) + 𝑑2.  

e. Define a vector of rupture distances 𝒓𝑟𝑢𝑝. The rupture distances calculated at Step 8.d 

are then assigned to the members of 𝒓𝑟𝑢𝑝 through linear interpolation in log-space, 

multiplied by the PMF calculated in Step 5. This results in a 3D array, in which each 

magnitude 𝑚𝑚 and hypocentral distance 𝑟𝑗 has an associated PMF of rupture distances 

𝒓𝑟𝑢𝑝. 

9. Repeat Step 8 for all members of 𝝓 to obtain a 4D lookup table where each combination 

of azimuth 𝜙𝑖, magnitude 𝑚𝑚 and hypocentral distance 𝑟𝑗 has an associated PMF of 

rupture distances 𝒓𝑟𝑢𝑝. 

10. Finally, apply a Gaussian kernel over the azimuth dimension of the lookup table to 

account for the variability in rupture strike. 

Note: The lookup table is 2-fold symmetric (e.g. the distribution of rupture distances of an event at 

30° relative angle is identical to those at 150°, 210° and 330°). This means that the lookup table 

only needs to be calculated over a range of 90 degrees.  
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Figure 8: Relation between the mean strike of rupture planes 𝛼 and relative angle (𝜙 = 𝛽 − 𝛼). If 

the relative angle is 0°, rupture planes have a mean strike parallel to the line 

connecting the observation point and the hypocenter. Note that variability around the 

mean strike is geometrically identical to variability in relative angle. 

  

BOX 5  IMPLEMENTATION OF SSM V5 RUPTURE MODEL INTEGRATION 

1. Calculate the source distribution 𝜆𝐷(𝒙, 𝑡,𝑚,𝑀𝑚𝑎𝑥) as described in Box 3, and the 

lookup table 𝐿(𝑟ℎ𝑦𝑝, 𝜙, 𝑚, 𝑟𝑟𝑢𝑝) as described in Box 4.  

2. Transform the source distribution into 𝜆𝑐
𝐷(𝒙, 𝑡,𝑚,𝑀𝑚𝑎𝑥) by numerically differentiating 

along the magnitude dimension of 𝜆𝐷. 𝜆𝑐
𝐷 therefore simple contains the expectation 

number of events in each spatio-temporal-magnitude bin, for each prior value of 𝑀𝑚𝑎𝑥. 

3. Define a vector of observation points 𝒒.  

For each member 𝑞𝑖 = 𝑥𝑖 , 𝑦𝑖: 
a. For each location 𝒙 in the source distribution 𝜆𝑐

𝐷: 

i. Determine the distance 𝑟ℎ𝑦𝑝 and azimuth 𝜙. 

ii. Select a sub-table 𝐿∗(𝑟ℎ𝑦𝑝,𝑚, 𝑟𝑟𝑢𝑝) from 𝐿, based on simple 0th order 

interpolation of the azimuth (i.e. select the sub-table calculated for the azimuth 

closest to 𝜙. 

iii. Obtain 𝐿∗∗(𝑚, 𝑟𝑟𝑢𝑝) based on linear interpolation of 𝐿∗ in log-space in the 𝑟ℎ𝑦𝑝 

dimension. 

iv. Calculate 𝑓(𝑞𝑖, 𝒙, 𝑡,𝑀𝑚𝑎𝑥,𝑚, 𝑟
𝑟𝑢𝑝) = 𝐿∗∗(𝑚, 𝑟𝑟𝑢𝑝)𝜆𝑐

𝐷(𝒙, 𝑡, 𝑚,𝑀𝑚𝑎𝑥). 

b. Calculate 𝑓(𝑞𝑖, 𝑡, 𝑀𝑚𝑎𝑥,𝑚, 𝑟
𝑟𝑢𝑝) = ∑ 𝑓(𝑞𝑖, 𝒙, 𝑡,𝑀𝑚𝑎𝑥,𝑚, 𝑟

𝑟𝑢𝑝)𝒙 . 

4. Repeat Step 3 for all observation points 𝒒 to obtain 𝑓(𝑞, 𝑡,𝑀𝑚𝑎𝑥,𝑚, 𝑟𝑟𝑢𝑝). 

 

 

N
𝛼

𝛽

Observation point

Hypocentre

Rupture plane
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 3.2 Hazard Model (V5) 

The Hazard Model is based entirely on the GMM V5 (Geometric mean5), as 

described in Bommer et al. (2018). It is implemented in two distinct steps. The first 

step (preparation) is independent of the gas production and can therefore be pre-

calculated. It calculates a lookup table of exceedance probabilities of ground 

motions. The second step (integration) combines this lookup table with the output of 

the SSM, which is dependent on the gas production. 

 First step: Preparation 

3.2.1.1 Input files 

 

Model parameters for the hazard preparation calculation are provided in input yaml 

files6.  

 

V5_GMM_Medians_NSB.yaml 

This file contains the model parameters 𝑚0, 𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5 and 𝑟0, 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5 

for every logic tree branch 𝐺𝑀𝑀𝑚𝑒𝑑  and spectral period 𝑇 (Figure 5). These 

parameters are used to compute the source and path term, which together define 

the ground motion at the reference level, base of the North Sea Group (NS_B). 

 

GmpeSurfaceAmplificationModel_20170826_V5.yaml 

This file contains the model parameters: 

𝑎0, 𝑎1, 𝑏0, 𝑏1, 𝑓2, 𝑓3, 𝜙𝑆2𝑆,1, 𝜙𝑆2𝑆,2, 𝑆𝑎ℎ𝑖𝑔ℎ , 𝑆𝑎𝑙𝑜𝑤 , 𝐴𝑚𝑖𝑛 , 𝐴𝑚𝑎𝑥 for every site response 

region 𝓈 and every spectral period 𝑇. These parameters are used to compute the 

probability of exceedance at the surface per site response region and spectral 

period, given a spectral acceleration at the reference level (NS_B). 

 

V5_GMM_Sigmas_NSB_Tau.yaml 

This file contains model parameter 𝜏 for every spectral period 𝑇 and 𝐺𝑀𝑀𝑚𝑒𝑑 logic 

tree branch.  

 

V5_GMM_Sigmas_NSB_PhiSS.yaml 

This file contains the model parameter 𝜙𝑠𝑠 for every spectral period 𝑇 and Φ𝑠𝑠 logic 

tree branch. 

3.2.1.2 Implementation 

 

For each site response region 𝓈, the probability of exceeding acceleration 𝐴 at the 

earth’s surface, for spectral period 𝑇, due to an earthquake of magnitude 𝑚 

occurring at distance 𝑟𝑟𝑢𝑝, for a selection of logic tree branch members 𝐺𝑀𝑀𝑚𝑒𝑑, 

Φ𝑠𝑠 , (i.e. 𝑃(𝐴0
𝑠𝑢𝑟 > 𝐴𝑠𝑢𝑟|𝑚, 𝑟𝑟𝑢𝑝, 𝑇, 𝐺𝑀𝑀𝑚𝑒𝑑 , Φ𝑠𝑠, 𝓈) can be calculated. This is done 

based on the model parameters in the input files, and based on discretized values 

for 𝐴,𝑚 , 𝑟𝑟𝑢𝑝. The numerical implementation is described in Box 6. 

 

 
5 GMM V5 contains the possibility for calculate ground motions according to the Geometric Mean 

or Arbitrary Component. By convention, the Geometric Mean is used for hazard calculations, while 

the Arbitrary Component is used for risk calculations. 
6 YAML is a commonly used file format for configuration and input files 
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BOX 6 IMPLEMENTATION OF HAZARD MODEL PREPARATION 

1. Define vectors for spectral acceleration bin edges 𝐴𝑒𝑑𝑔𝑒 , and associated bin centers in 

log-space 𝐴. These values will be used for both surface level and reference level. 

2. Define vectors for magnitude 𝑚, and distance 𝑟𝑟𝑢𝑝. 

3. For every site response region 𝓈: 

a. For every spectral period 𝑇𝑗: 

i. Calculate the site response probability of exceedance, given a spectral acceleration 

at reference level (NS_B): 

1. Calculate log[(𝐴𝐹𝑆𝑎)
𝑚𝑒𝑑𝑖𝑎𝑛(𝑟𝑟𝑢𝑝,𝑚, 𝐴)] (for all unique combinations of 

𝑟𝑟𝑢𝑝,𝑚, 𝐴): 

a. 𝑀𝑟𝑒𝑓 = 𝑀1 −
log(𝑟𝑟𝑢𝑝)−log (3)

log(60)−log (3)
(𝑀1 −𝑀2) where 𝑀1 and 𝑀2 are model 

parameters depending on 𝓈 and 𝑇𝑗. 

b. 𝑓1 = (𝑎0 + 𝑎1 log(𝑟
𝑟𝑢𝑝)) + (𝑏0 + 𝑏1log (𝑟

𝑟𝑢𝑝))(min(𝑚,𝑀𝑟𝑒𝑓) − 𝑀𝑟𝑒𝑓) where 

𝑎0, 𝑎1, 𝑏0, and 𝑏1 are model parameters depending on 𝓈 and 𝑇𝑗. 

c. log[(𝐴𝐹𝑆𝑎)
𝑚𝑒𝑑𝑖𝑎𝑛] = 𝑓1 + 𝑓2 log (

𝐴+𝑓3

𝑓3
)  where 𝑓2 and 𝑓3 are model parameter 

depending on 𝓈 and 𝑇𝑗. 

d. Set all values of log[(𝐴𝐹𝑆𝑎)
𝑚𝑒𝑑𝑖𝑎𝑛]  lower than log (𝐴𝑚𝑖𝑛) to log (𝐴𝑚𝑖𝑛), and all 

values log[(𝐴𝐹𝑆𝑎)
𝑚𝑒𝑑𝑖𝑎𝑛]  higher than log (𝐴𝑚𝑎𝑥) to log (𝐴𝑚𝑎𝑥),  where 𝐴𝑚𝑖𝑛 

and 𝐴𝑚𝑎𝑥 are model parameter depending on 𝓈 and 𝑇𝑗. 

2. Calculate (𝐴𝐹𝑆𝑎)
𝜎(𝐴): 

a. (𝐴𝐹𝑆𝑎)
𝜎(𝐴) =  𝜙𝑆2𝑆,1 + (𝜙𝑆2𝑆,2 − 𝜙𝑆2𝑆,1) [

log(𝐴)−log (𝑆𝑎𝑙𝑜𝑤)

log(𝑆𝑎ℎ𝑖𝑔ℎ)−log (𝑆𝑎𝑙𝑜𝑤)
], where 

𝜙𝑆2𝑆,1, 𝜙𝑆2𝑆,2, 𝑆𝑎ℎ𝑖𝑔ℎ and 𝑆𝑎𝑙𝑜𝑤 are model parameter depending on 𝓈 and 𝑇𝑗. 

b. Set all values of (𝐴𝐹𝑆𝑎)
𝜎 lower than 𝑆𝑎𝑙𝑜𝑤  to 𝑆𝑎𝑙𝑜𝑤, and all values (𝐴𝐹𝑆𝑎)

𝜎 

higher than 𝑆𝑎ℎ𝑖𝑔ℎ to 𝑆𝑎ℎ𝑖𝑔ℎ. 

3. For every unique combination of of 𝐴𝑟𝑒𝑓 , 𝑟𝑟𝑢𝑝, 𝑚, calculate: 

𝑃(𝐴0
𝑠𝑢𝑟 > 𝐴𝑠𝑢𝑟|𝐴𝑚

𝑟𝑒𝑓
, 𝑚𝑛, 𝑟𝑜

𝑟𝑢𝑝
, 𝑇𝑗, 𝓈) =   

1

2
−
1

2
erf [

log(𝐴𝑒𝑑𝑔𝑒
𝑠𝑢𝑟 ) − (log(𝐴𝐹𝑆𝑎)

𝑚𝑒𝑑𝑖𝑎𝑛 + log (𝐴𝑟𝑒𝑓))

√2(𝐴𝐹𝑆𝑎)
𝜎

]. 

ii. For every logic tree branch (𝐺𝑀𝑀𝑚𝑒𝑑)𝑘: 

1. For every member of 𝑚, obtain 𝑔𝑠𝑜𝑢𝑟𝑐𝑒 =   : 

{

𝑚0 +𝑚1(𝑚 − 4.7) + 𝑚2(𝑚 − 4.7)2 if 𝑚 ≤ 4.7

𝑚0 +𝑚3(𝑚 − 4.7) if 4.7 < 𝑚 ≤ 5.45

𝑚0 +𝑚3(5.45 − 4.7) + 𝑚4(𝑚 − 5.45) + 𝑚5(𝑚 − 5.45)2 𝑚 > 5.45

, 

where 𝑚0,𝑚1, 𝑚2,𝑚3,𝑚4 and 𝑚5 are model parameter depending on 
(𝐺𝑀𝑀𝑚𝑒𝑑)𝑘 and spectral period 𝑇𝑗. 

2. For every unique combination of 𝑚, 𝑟𝑟𝑢𝑝, obtain 𝑔𝑝𝑎𝑡ℎ =   : 

  

{
 
 

 
 (𝑟0 + 𝑟1𝑚) log (

𝑟𝑟𝑢𝑝

3
) if 𝑟𝑟𝑢𝑝 ≤ 7

(𝑟0 + 𝑟1𝑚) log (
7

3
) + (𝑟2 + 𝑟3𝑚) log (

𝑟𝑟𝑢𝑝

7
) if 7 < 𝑟𝑟𝑢𝑝 ≤ 12

(𝑟0 + 𝑟1𝑚) log (
7

3
) + (𝑟2 + 𝑟3𝑚) log (

12

7
) + (𝑟4 + 𝑟5𝑚) log (

𝑟𝑟𝑢𝑝

12
) 𝑟𝑟𝑢𝑝 > 12

, 

where 𝑟0, 𝑟1, 𝑟2, 𝑟3, 𝑟4 and 𝑟5 are model parameter depending on (𝐺𝑀𝑀𝑚𝑒𝑑)𝑘 and 
spectral period 𝑇𝑗. 
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BOX 6 IMPLEMENTATION OF HAZARD MODEL PREPARATION (CONT.) 

3. log(𝑌(𝑟𝑟𝑢𝑝, 𝑚)) = 𝑔𝑝𝑎𝑡ℎ(𝑟
𝑟𝑢𝑝,𝑚) + 𝑔𝑠𝑜𝑢𝑟𝑐𝑒(𝑚) + log (

0.01

9.807
).  

4. For every logic tree branch (Φ𝑠𝑠)𝑙: 

a. Calculate 𝜎𝑌 = √𝜏2 + 𝜙𝑠𝑠
2  where 𝜏 depends on (𝐺𝑀𝑀𝑚𝑒𝑑)𝑘 and 𝑇𝑗 and 𝜙𝑠𝑠 

depends on (Φ𝑠𝑠)𝑙 and 𝑇𝑗. 

b. Calculate the probability of exceeding 𝐴 at reference depth (NS_B), for every 

unique combination of 𝑚, 𝑟𝑟𝑢𝑝: 

𝑃(𝐴0
𝑟𝑒𝑓

> 𝐴𝑟𝑒𝑓|𝑚𝑛, 𝑟𝑜
𝑟𝑢𝑝

, 𝑇𝑗, (𝐺𝑀𝑀𝑚𝑒𝑑)𝑘, (Φ𝑠𝑠)𝑙 , 𝓈) =  

1

2
−
1

2
erf [

log(𝐴𝑒𝑑𝑔𝑒
𝑟𝑒𝑓

) − log(𝑌(𝑟𝑜
𝑟𝑢𝑝

,𝑚𝑖))

√2𝜎𝑌
] . 

c. Numerically differentiate 𝑃(𝐴0
𝑟𝑒𝑓

> 𝐴𝑟𝑒𝑓|𝑚𝑛, 𝑟𝑜
𝑟𝑢𝑝

, 𝑇𝑗, (𝐺𝑀𝑀𝑚𝑒𝑑)𝑘, (Φ𝑠𝑠)𝑙 , 𝓈)   

along the 𝐴 dimension to obtain the PMF  

𝑃(𝐴0
𝑟𝑒𝑓

= 𝐴𝑟𝑒𝑓|𝑚𝑛, 𝑟𝑜
𝑟𝑢𝑝

, 𝑇𝑗, (𝐺𝑀𝑀𝑚𝑒𝑑)𝑘, (Φ𝑠𝑠)𝑙 , 𝓈).  

d. Obtain 𝑃(𝐴0
𝑠𝑢𝑟 > 𝐴𝑠𝑢𝑟|𝑚𝑛, 𝑟𝑜

𝑟𝑢𝑝
, 𝑇𝑗, (𝐺𝑀𝑀𝑚𝑒𝑑)𝑘, (Φ𝑠𝑠)𝑙 , 𝓈) =

 𝑃(𝐴0
𝑠𝑢𝑟 > 𝐴𝑠𝑢𝑟|𝐴𝑚

𝑟𝑒𝑓
, 𝑚𝑛, 𝑟𝑜

𝑟𝑢𝑝
, 𝑇𝑗, 𝓈) ×  𝑃(𝐴0

𝑟𝑒𝑓
=

𝐴𝑟𝑒𝑓|𝑚𝑛, 𝑟𝑜
𝑟𝑢𝑝

, 𝑇𝑗, (𝐺𝑀𝑀𝑚𝑒𝑑)𝑘, (Φ𝑠𝑠)𝑙 , 𝓈) (i.e. multiplication of matrix obtained 

in Step 3.a.i.3. with the matrix obtained in Step 3.a.ii.4.b.). 

e. Repeat for all logic tree branches (Φ𝑠𝑠)𝑙 . 

5. Repeat for all logic tree branches (𝐺𝑀𝑀𝑚𝑒𝑑)𝑘. 

iii. Repeat for all spectral periods 𝑇𝑗. 

b. Repeat for all site response regions 𝓈. 

4. Save the resulting matrix 𝑃(𝐴0
𝑠𝑢𝑟 > 𝐴𝑠𝑢𝑟|𝑚, 𝑟𝑟𝑢𝑝, 𝑇, 𝐺𝑀𝑀𝑚𝑒𝑑, Φ𝑠𝑠, 𝓈). 
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  Second step: Integration 

3.2.2.1 Input files 

 

Lookup table exceedance values of ground motions 

This lookup table (produced in the GMM preparation code) contains exceedance 

probabilities spectral accelerations 𝐴, for all site response regions 𝓈, spectral 

periods 𝑇, 𝐺𝑀𝑀𝑚𝑒𝑑 and Φ𝑠𝑠 logic tree branches, due to a hypothetical earthquake 

at rupture distance 𝑟𝑟𝑢𝑝 and of magnitude 𝑚: 

𝑃(𝐴0 > 𝐴|𝑚, 𝑟𝑟𝑢𝑝 , 𝑇, 𝐺𝑀𝑀𝑚𝑒𝑑 , Φ𝑠𝑠 , 𝓈).  

 

Output rupture model (SSM) 

A probability mass function (PMF) matrix of earthquake expectation values per 

evaluation point 𝑞, year 𝑡, maximum magnitude logic tree branch 𝑀𝑚𝑎𝑥, magnitude 

𝑚 and rupture distance 𝑟𝑟𝑢𝑝: 

𝑝(𝑞, 𝑡,𝑀𝑚𝑎𝑥 , 𝑚, 𝑟
𝑟𝑢𝑝).  

 

Zonation shape files 

A shape file containing the polygons of all site response regions. 

3.2.2.2 Input parameters 
{ 

  "logictree": { 

    "Mmax": { 

"4.0": 0.08625, 

         "4.5": 0.4, 

         "5.0": 0.24375, 

         "5.5": 0.1125, 

         "6.0": 0.07875, 

         "6.5": 0.0525, 

         "7.0": 0.02625}, 

    "GMMMedian": { 

  "Upper": 0.3, 

  "CentralUpper": 0.3, 

  "CentralLower": 0.3, 

  "Lower": 0.1 

  }, 

    "GMMPhiSS": { 

  "phi_ss_high": 0.5, 

  "phi_ss_low": 0.5 

  } }, 

  "basedir": <string, full path to directory containing all 

input files>, 

  "gmmsiteresponseregionsfile": <string, name of the input 

file>, 

  "ssmmrdistributionsfile": <string, name of the input file>, 

  "gmmsurfacepoefile": <string, name of the input file>, 

  "hazard_outputfile": <string, name of the output file>, 

  "returnperiods": [ 

    475.0, 

    2475.0 

  ] 

} 
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  Implementation 

 

The calculations in the hazard integrator are carried out per site response region 𝓈. 

To do this, we first define which evaluation points 𝑞|𝓈𝑖 lay within a site response 

region 𝓈𝑖. Points within the polygons are considered as well as the ones 

surrounding the polygon (Figure 9), so that bilinear interpolation can be applied 

when visualizing hazard maps.   

 

Figure 9: Visual representation of how evaluation points per site response zone (𝓈) are defined. 

The orange and green polygons define two hypothetical site response regions and all 

orange and green points are the evaluation points for which hazard is computed 

according to amplification of that site response region, respectively.   

The exceedance probabilities of ground motions 𝑃𝑒𝑥𝑐(𝐴0 > 𝐴  | 𝑚, 𝑟𝑟𝑢𝑝 , 𝑇) over all 

ground motion logic tree branches (𝐺𝑀𝑀𝑚𝑒𝑑 and Φ𝑠𝑠) and the integrated 

occurrence probabilities of earthquakes 𝑝𝑖𝑛𝑡(𝑞, 𝑡,𝑚, 𝑟𝑟𝑢𝑝) over the 𝑀𝑚𝑎𝑥 logic tree 

branches are computed by matrix multiplication with the respective branch weights 

𝑃(𝐺𝑀𝑀𝑚𝑒𝑑), 𝑃(𝜙𝑠𝑠) and 𝑃(𝑀max). 

 

The annual exceedance probabilities of the ground motions due to the actual 

forecasted earthquakes are also computed by matrix multiplication of 𝑃𝑒𝑥𝑐 with 𝑝𝑖𝑛𝑡. 

 

To compute the hazard values 𝐴0 (ground motions) corresponding to the pre-

defined return periods 1 𝑃(𝐴0 > 𝐴)⁄ , linear interpolation in log space is used to 

obtain the ground motion associated with that exceedance probability. These can 

then be plotted as maps. The numerical implementation is described in Box 7.  
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BOX 7 IMPLEMENTATION OF HAZARD INTEGRATION 

1. Import 𝑝(𝑞, 𝑡,𝑀𝑚𝑎𝑥 ,𝑚, 𝑟) and associated grids 𝑞, 𝑡,𝑀𝑚𝑎𝑥,𝑚, 𝑟
𝑟𝑢𝑝. 

2. For every site response region 𝓈: 

a. Define the evaluation grid points of that site response region 𝑞𝓈 . 

b. Extract the earthquake PMF only for those evaluation points 

𝑝(𝑞𝓈 , 𝑡,𝑀𝑚𝑎𝑥 ,𝑚, 𝑟
𝑟𝑢𝑝). 

c. Compute the mean earthquake PMF over the 𝑀𝑚𝑎𝑥 logic tree branches: 

𝑝𝑖𝑛𝑡(𝑞𝓈 , 𝑡, 𝑚, 𝑟
𝑟𝑢𝑝)  = ∑ 𝑃(𝑀max𝑙)𝑝(𝑞𝓈  , 𝑡,𝑀𝑚𝑎𝑥𝑙

,𝑚, 𝑟𝑟𝑢𝑝).𝑙  

d. Import 𝑃(𝐴0 > 𝐴|𝑚, 𝑟𝑟𝑢𝑝, 𝑇, 𝐺𝑀𝑀𝑚𝑒𝑑 , Φ𝑠𝑠). 

e. Compute the probability of exceeding ground motions over 𝐺𝑀𝑀𝑚𝑒𝑑 and 𝜙𝑠𝑠 

logic tree branches: 

𝑃𝑒𝑥𝑐(𝐴0 > 𝐴 | 𝑚, 𝑟𝑟𝑢𝑝, 𝑇)  

=∑∑𝑃((𝐺𝑀𝑀𝑚𝑒𝑑)𝑗)𝑃((𝜙𝑠𝑠)𝑘)𝑃(𝐴0
𝑘𝑗

> 𝐴  | 𝑚, 𝑟𝑟𝑢𝑝, 𝑇, (𝐺𝑀𝑀𝑚𝑒𝑑)𝑗, (𝜙𝑠𝑠)𝑘). 

f. Compute the probability of exceeding ground motions for the forecasted 

earthquake occurrence: 

𝑃(𝐴0 > 𝐴 |𝑞𝓈 , 𝑡, 𝑇)

=  ∑∑𝑃𝑒𝑥𝑐(𝐴0 > 𝐴  | 𝑚𝑚, 𝑟
𝑟𝑢𝑝

𝑛, 𝑇) 𝑝𝑖𝑛𝑡(𝑞𝓈 , 𝑡, 𝑚𝑚, 𝑟
𝑟𝑢𝑝

𝑛).

𝑛𝑚

 

g. Sample hazard values 𝐴0(𝑞𝓈 , 𝑡, 𝑇) at return periods  1 𝑃(𝐴0 > 𝐴)⁄ , defined in 

the input parameter file by linear interpolation in log space. 

3. Repeat for every site response region 𝓈 and save the resulting matrices: 𝐴0(𝑞𝓈 , 𝑡, 𝑇, 𝓈) 

of all site response regions 𝓈. 
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 3.3 Risk Model (V5) 

The Risk Model is a combination of GMM V5 (Arbitrary Component7) and the 

Fragility & Consequence Model V5 (Crowley & Pinho, 2017; Crowley et al., 2017). 

By combining these models, the output of the SSM can directly by convolved with a 

risk-lookup table to obtain the Local Personal Risk (LPR) for each location in the 

field, for each building typology. This result can be used as-is (i.e. what is the risk of 

type of building at a given location, assuming that type of building is present) or it 

can be convolved with an exposure database to obtain an LPR value per building. 

 

 First step: Preparation  

3.3.1.1 Input files 

 

Model parameters for the hazard preparation calculation are provided in input yaml 

files.  

 

GmpeSurfaceZonationVs30_20170826_V5.yaml 

This file contains model parameter 𝑉𝑆,30 for every site response region 𝓈. 𝑉𝑆,30 is the 

shear velocity at 30 m depth per site response region 𝓈, which is used to compute 

the duration of the ground motion. 

 

Im2im_V5.yaml 

This file contains the correlation matrices for spectral periods and duration and for 

spectral periods to spectral periods. 

 

fragilityV5.yaml 

This file contains the model parameters 𝑇1, 𝑇2, 𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝛽𝑠, 𝐷𝐿𝑢, 𝛽𝑐ℎ , 𝑃𝐺𝐴𝑐ℎ̅̅ ̅̅ ̅̅ ̅̅ ̅ where 

  are the limit (damage and collapse) states {𝐷𝑆1, 𝐷𝑆2, 𝐷𝑆3, 𝐶𝑆1, 𝐶𝑆2, 𝐶𝑆3}. These 

parameters are defined per fragility branch 𝑙𝑓𝑟𝑎𝑔 and typology 𝓉.  

 

V5_GMM_Medians_NSB.yaml 

This file contains the model parameters 𝑚0, 𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5 and 𝑟0, 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5 

for every logic tree branch 𝐺𝑀𝑀𝑚𝑒𝑑  and spectral period 𝑇. These parameters are 

used in the same way as in the hazard preparation.  

 

GmpeSurfaceAmplificationModel_20170826_V5.yaml 

This file contains the model parameters: 

𝑎0, 𝑎1, 𝑏0, 𝑏1, 𝑓2, 𝑓3, 𝜙𝑆2𝑆,1, 𝜙𝑆2𝑆,2, 𝑆𝑎ℎ𝑖𝑔ℎ , 𝑆𝑎𝑙𝑜𝑤 , 𝐴𝑚𝑖𝑛 , 𝐴𝑚𝑎𝑥 for every site response 

region 𝓈 and every spectral period 𝑇. These parameters are used in the same way 

as in the hazard preparation. In addition this file also contains parameters 𝑀1, 𝑀2 for 

every site response region 𝓈 and every spectral period 𝑇. 

 

V5_GMM_Sigmas_NSB_Tau.yaml 

This file contains model parameter 𝜏 for every spectral period 𝑇 and 𝐺𝑀𝑀𝑚𝑒𝑑 logic 

tree branch.  

 

 
7 GMM V5 contains the possibility for calculate ground motions according to the Geometric Mean 

or Arbitrary Component. By convention, the Geometric Mean is used for hazard calculations, while 

the Arbitrary Component is used for risk calculations. 
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 V5_GMM_Sigmas_NSB_PhiSS.yaml 

This file contains the model parameter 𝜙𝑠𝑠 for every spectral period 𝑇 and Φ𝑠𝑠 logic 

tree branch. 

3.3.1.2 Implementation  

 

Independent of the event density (forecast), and therefore independent of gas 

production, a lookup table can be created. This lookup table contains a 

complementary cumulative mass function (CCMF) which contains exceedance 

probabilities of each limit state  , for every typology 𝓉, for every site response 

region 𝓈 , every combined ground motion logic tree branch 𝐺𝑀𝑀𝑚𝑒𝑑𝜙𝑠𝑠, every 

fragility logic tree branch 𝑙𝑓𝑟𝑎𝑔, due to a hypothetical earthquake at distances 𝑟𝑟𝑢𝑝 

and magnitudes 𝑚 (𝑃( 0 >   | 𝓉, 𝓈,𝑚, 𝑟𝑟𝑢𝑝, 𝐺𝑀𝑀𝑚𝑒𝑑𝜙𝑠𝑠, 𝑙𝑓𝑟𝑎𝑔  ) ).  

 

The lookup table also contains the probability of dying due to chimney collapse 
𝑃𝑑𝑐ℎ𝑖𝑚𝑛𝑒𝑦

 for all consequence logic tree branches 𝑙𝑐𝑜𝑛𝑠, for every typology 𝓉, for 

every site response region 𝓈, every combined ground motion logic tree branch 

𝐺𝑀𝑀𝑚𝑒𝑑𝜙𝑠𝑠, every fragility logic tree branch 𝑙𝑓𝑟𝑎𝑔 and fatality logic tree branch 𝑙𝑓𝑎𝑡, 

due to a hypothetical earthquake at distances 𝑟𝑟𝑢𝑝 and magnitudes 𝑚. 

 

The lookup table is created based on the model parameters in the input files, and 

based on discretized values for 𝑚 , 𝑟𝑟𝑢𝑝. The numerical implementation is described 

in Box 8. 

 

In order to rapidly convolve the risk output (LPR for each location in the field, for 

each building typology) with the building exposure database, a preparatory 

calculation is performed to obtain the contribution of each surrounding grid point to 

each building in the exposure database (see Figure 11 and Figure 12). 
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Figure 10: Visualization of calculation of risk at a given building (denoted by the black cross) in the 

exposure database. 1) Find the zone in which the building is located (the orange zone 

in this case). 2) Find the four grid points surrounding this point. These grid points have 

a non-zero contribution to the risk at the location of the building. 3) Find the 

contributions of points 2, 3, 5, and 6 to the building. In this case, since the building lies 

at 30% between the vertical lines through 2&5 and 3&6, and at 20% between the 

horizontal lines through 2&3 and 5&6, the contributions are: Point 2: 0.2x0.7 = 0.14, 

Point 3: 0.2x0.3 = 0.06, Point 5: 0.7x0.8 = 0.56, Point 6: 0.3x0.8 = 0.24. 

 

 

Figure 11: Building ×𝑜 is located in the orange zone, while building ×𝑏 is located in the blue zone, 

even though both buildings lie within the borders of the blue zone. This is accounted 

for in the TNO Model Chain code. 
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BOX 8 IMPLEMENTATION OF RISK MODEL PREPARATION 

1. Define vectors for magnitude 𝑚, and distance 𝑟𝑟𝑢𝑝. Define a number of synthetic 

catalogues 𝑁𝑐𝑎𝑡 and samples per catalogue 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠. 

2. For every site response region 𝓈: 
a. For every synthetic catalogue 𝑐𝑎𝑡𝑗: 

i. For every (𝐺𝑀𝑀𝑚𝑒𝑑)𝑘. 

1. For every logic tree branch (Φ𝑠𝑠)𝑙: 

a. For every unique combination of 𝑚, 𝑟𝑟𝑢𝑝: 

i. Repeat 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 times: 

1. Draw a correlated sample from a multivariate normal distribution with 

mean 𝜇 = 0 and 𝑐𝑜𝑣 is given by the correlation matrix for spectral 

periods and duration (Im2im_V5.yaml input file): 𝜖𝑟𝑒𝑓 . 

2. Draw a correlated sample from a multivariate normal distribution with 

mean 𝜇 = 0 and 𝑐𝑜𝑣 is given by the correlation matrix for spectral 

periods only (Im2im_V5.yaml input file): 𝜖𝐴𝐹 . 

3. For every spectral period 𝑇𝑚 required for fragility 

a. Calculate 𝑔𝑠𝑜𝑢𝑟𝑐𝑒 =  : 

𝑚0 +𝑚1(𝑚 − 4.7) +𝑚2(𝑚 − 4.7)2 if 𝑚 ≤ 4.7

𝑚0 +𝑚3(𝑚 − 4.7) if 4.7 < 𝑚 ≤ 5.45,

𝑚0 +𝑚3(5.45 − 4.7) + 𝑚4(𝑚 − 5.45) + 𝑚5(𝑚 − 5.45)2 𝑚 > 5.45

 

where 𝑚0,𝑚1, 𝑚2,𝑚3,𝑚4 and 𝑚5 are model parameter depending on 
(𝐺𝑀𝑀𝑚𝑒𝑑)𝑘 and spectral period 𝑇𝑚. 
b. Calculate 𝑔𝑝𝑎𝑡ℎ =   

{
 
 
 

 
 
 (𝑟0 + 𝑟1𝑚) log (

𝑟𝑟𝑢𝑝

3
) if 𝑟𝑟𝑢𝑝 ≤ 7

(𝑟0 + 𝑟1𝑚) log (
7

3
) + (𝑟2 + 𝑟3𝑚) log (

𝑟𝑟𝑢𝑝

7
) if 7 < 𝑟𝑟𝑢𝑝 ≤ 12,

(𝑟0 + 𝑟1𝑚) log (
7

3
) + (𝑟2 + 𝑟3𝑚) log (

12

7
) + (𝑟4 + 𝑟5𝑚) log(

𝑟𝑟𝑢𝑝

12
) 𝑟𝑟𝑢𝑝 > 12

 

where 𝑟0, 𝑟1, 𝑟2, 𝑟3, 𝑟4 and 𝑟5 are model parameter depending on (𝐺𝑀𝑀𝑚𝑒𝑑)𝑘 
and spectral period 𝑇𝑚. 

c. log(𝑌(𝑟𝑟𝑢𝑝, 𝑚)) = 𝑔𝑝𝑎𝑡ℎ(𝑟
𝑟𝑢𝑝,𝑚) + 𝑔𝑠𝑜𝑢𝑟𝑐𝑒(𝑚) + log (

0.01

9.807
) .  

d. Calculate 𝜎𝑌 = √𝜏2 + 𝜙𝑠𝑠
2 + 𝜎𝑐2𝑐

2  where 𝜏 depends on (𝐺𝑀𝑀𝑚𝑒𝑑)𝑘, 

𝜙𝑠𝑠 depends on (Φ𝑠𝑠)𝑙, and 𝜎𝑐2𝑐
2 (𝑇𝑚,𝑚, 𝑟

𝑟𝑢𝑝) =   

 

{
 
 

 
 
0.026 + 1.03[5.6 − min (5.6;max (𝑚; 3.6)](𝑟𝑟𝑢𝑝)−2.22 if 𝑇 ≤ 0.1

[
𝜎𝑐2𝑐
2 (0.1,𝑚, 𝑟𝑟𝑢𝑝) + [

log (𝑇𝑗) − log (0.1)

log(0.85) − log (0.1)
] ×

[𝜎𝑐2𝑐
2 (0.85,𝑚, 𝑟𝑟𝑢𝑝) − 𝜎𝑐2𝑐

2 (0.1,𝑚, 𝑟𝑟𝑢𝑝)]

] if 0.1 < 𝑇 < 0.85.

0.045 + 5.315[5.6 − min (5.6;max (𝑚; 3.6)](𝑟𝑟𝑢𝑝)−2.92 𝑇 ≥ 0.85

  

e. 𝐴𝑟𝑒𝑓 = exp (log(𝑌) +𝜎𝑐2𝑐
2 × (𝜖𝑟𝑒𝑓)𝑚). 

f. 𝑀𝑟𝑒𝑓 = 𝑀1 −
log(𝑟𝑟𝑢𝑝)−log(3)

log(60)−log(3)
(𝑀1 −𝑀2), where 𝑀1 and 𝑀2 are model 

parameters depending on 𝓈 and 𝑇𝑚. 

g. 𝑓1 = (𝑎0 + 𝑎1 log(𝑟
𝑟𝑢𝑝)) + (𝑏0 + 𝑏1log (𝑟

𝑟𝑢𝑝))(min(𝑚,𝑀𝑟𝑒𝑓) −

𝑀𝑟𝑒𝑓), where 𝑎0, 𝑎1, 𝑏0, and 𝑏1 are model parameter depending on 𝓈 

and 𝑇𝑚. 
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BOX 8 IMPLEMENTATION OF RISK MODEL PREPARATION (CONT.) 

h. log[(𝐴𝐹𝑆𝑎)
𝑚𝑒𝑑𝑖𝑎𝑛] = 𝑓1 + 𝑓2 log (

𝐴𝑟𝑒𝑓+𝑓3

𝑓3
)  where 𝑓2 and 𝑓3 are model 

parameter depending on 𝓈 and 𝑇𝑚. 

i. Set all values of log[(𝐴𝐹𝑆𝑎)
𝑚𝑒𝑑𝑖𝑎𝑛]  lower than log (𝐴𝑚𝑖𝑛) to 

log (𝐴𝑚𝑖𝑛), and all values log[(𝐴𝐹𝑆𝑎)
𝑚𝑒𝑑𝑖𝑎𝑛]  higher than log (𝐴𝑚𝑎𝑥) 

to log (𝐴𝑚𝑎𝑥),  where 𝐴𝑚𝑖𝑛 and 𝐴𝑚𝑎𝑥 are model parameter 

depending on 𝓈 and 𝑇𝑚. 

j. Calculate (𝐴𝐹𝑆𝑎)
𝜎: 

i. (𝐴𝐹𝑆𝑎)
𝜎 = 𝜙𝑆2𝑆,1 + (𝜙𝑆2𝑆,2 − 𝜙𝑆2𝑆,1) [

log(𝐴𝑟𝑒𝑓)−log (𝑆𝑎𝑙𝑜𝑤)

log(𝑆𝑎ℎ𝑖𝑔ℎ)−log (𝑆𝑎𝑙𝑜𝑤)
], where 

𝜙𝑆2𝑆,1, 𝜙𝑆2𝑆,2, 𝑆𝑎ℎ𝑖𝑔ℎ and 𝑆𝑎𝑙𝑜𝑤 are model parameter depending on 𝓈 

and 𝑇𝑚. 

ii. Set all values of (𝐴𝐹𝑆𝑎)
𝜎 lower than 𝑆𝑎𝑙𝑜𝑤  to 𝑆𝑎𝑙𝑜𝑤, and all values 

(𝐴𝐹𝑆𝑎)
𝜎 higher than 𝑆𝑎ℎ𝑖𝑔ℎ to 𝑆𝑎ℎ𝑖𝑔ℎ . 

k. 𝐴𝑠𝑢𝑟 = exp[log(𝐴𝑟𝑒𝑓) + log((𝐴𝐹𝑆𝑎)
𝑚𝑒𝑑𝑖𝑎𝑛) + (𝐴𝐹𝑆𝑎)

𝜎 × (𝜖𝐴𝐹)𝑚]. 

4. Calculate 𝑔𝑠𝑜𝑢𝑟𝑐𝑒 =  : 

{
𝑚6 +𝑚7(𝑚 − 5.25) if 𝑚 ≤ 5.25

𝑚6 +𝑚8(𝑚 − 5.25) + 𝑚9(𝑚 − 5.25)2 if 𝑚 > 5.25,
 

where 𝑚6,𝑚7, 𝑚8 and 𝑚9 are model parameter depending on 
(𝐺𝑀𝑀𝑚𝑒𝑑)𝑘 and spectral period 𝑇𝑚. 

5. Calculate 𝑔𝑝𝑎𝑡ℎ =   

{
 
 

 
 (𝑟6 + 𝑟7𝑚)[log (

𝑟𝑟𝑢𝑝

3
)]

𝑟8

if 𝑟𝑟𝑢𝑝 ≤ 12 km

(𝑟6 + 𝑟7𝑚)[log (
12

3
)]

𝑟8

+ (𝑟9 + 𝑟10𝑚) log(
𝑟𝑟𝑢𝑝

12
) if 𝑟𝑟𝑢𝑝 > 12 km,

 

where 𝑟6, 𝑟7, 𝑟8, 𝑟9 and 𝑟10 are model parameter depending on 
(𝐺𝑀𝑀𝑚𝑒𝑑)𝑘 and spectral period 𝑇𝑚. 

6. log(𝐷5−75(𝑟
𝑟𝑢𝑝,𝑚)) = 𝑔𝑝𝑎𝑡ℎ(𝑟

𝑟𝑢𝑝,𝑚) + 𝑔𝑠𝑜𝑢𝑟𝑐𝑒(𝑚). 

7. 𝜎𝐷𝑐2𝑐
2 = 0.0299 + 2.434[5.6 − min(5.6;max(3.6;𝑚))](𝑟𝑟𝑢𝑝)−1.95.    

8. (𝐷5−75)
𝜎 = √𝜏2 + 𝜙𝑠𝑠

2 + 𝜎𝐷𝑐2𝑐
2 , where 𝜏 depends on (𝐺𝑀𝑀𝑚𝑒𝑑)𝑘, 𝜙 

depends on (Φ𝑠𝑠)𝑙 . 

9. Calculate 𝑔𝑠𝑖𝑡𝑒 = −0.2246 log (
min (𝑉𝑠,30;600) 

600
) , where 𝑉𝑆,30 is a property 

of site response region 𝓈. 

10. 𝐷5−75 = exp(log(𝐷5−75) + (𝐷5−75)
𝜎 × (𝜖𝑟𝑒𝑓)𝑚 + 𝑔𝑠𝑖𝑡𝑒). 

b. The matrix obtained in 2.a.i.1.a.i. (up until the line above) contains 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

samples of ground motion for every spectral period 𝑇 (and 𝐷5−75) for every 

unique combination of 𝑚, 𝑟𝑟𝑢𝑝.  

c. Use this matrix to calculate, for every fragility logic tree branch (𝑙𝑓𝑟𝑎𝑔)𝑚 : 

i. For every typology 𝓉𝑛 : 

1. Calculate log(𝐼𝑀) = 𝑏0 + 𝑏1 log(𝐴𝑇1
𝑠𝑢𝑟) + 𝑏2log (𝐷5−75) + 𝑏3 log(𝐴𝑇2

𝑠𝑢𝑟) , 

where 𝑏0, 𝑏1, 𝑏2, and 𝑏3 are dependent on (𝑙𝑓𝑟𝑎𝑔)𝑚 and 𝓉𝑛, and 

𝐴𝑇1
𝑠𝑢𝑟 , 𝐴𝑇2

𝑠𝑢𝑟are the sampled ground motions for the spectral periods for 

which the fragility curves of typology 𝓉𝑛 are defined for. 

2. For each limit state  𝑝: 

a. 𝑋𝑢 =
log(𝐷𝐿𝑢)−log(IM)

𝛽𝑠
 where 𝐷𝐿𝑢 is dependent on limit state  , 

(𝑙𝑓𝑟𝑎𝑔)𝑚 and 𝓉𝑛 and 𝛽𝑠 is dependent on (𝑙𝑓𝑟𝑎𝑔)𝑚
 and 𝓉𝑛. 
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BOX 8 IMPLEMENTATION OF RISK MODEL PREPARATION (CONT.) 

b. 𝑃𝑓 = 0.5(1 − erf (
𝑋𝑢

√2
). 

c. 𝑃( 0 >  𝑝|𝑐𝑎𝑡𝑗, 𝓉𝑛, 𝓈,𝑚, 𝑟, (𝐺𝑀𝑀𝑚𝑒𝑑)𝑘, (𝜙𝑠𝑠)𝑙  , (𝑙𝑓𝑟𝑎𝑔)𝑚
) =   

1

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ (𝑃𝑓)𝑖.

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑖

 

3. For each consequence branch (𝑙𝑐𝑜𝑛𝑠)𝑞: 

a. Calculate 𝑃𝑐ℎ = 

{

0 if 𝛽𝑐ℎ = 0

0.5(1 + erf (
𝑋𝑐ℎ

√2
) if 𝛽𝑐ℎ > 0,

 

where 𝑋𝑐ℎ = min(log(𝐴𝑆𝑎 0.01
𝑠𝑢𝑟 ) ; log(0.75)) −

log (𝑃𝐺𝐴𝑐ℎ̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝛽𝑐ℎ
, 

𝛽𝑐ℎ and  𝑃𝐺𝐴𝑐ℎ̅̅ ̅̅ ̅̅ ̅̅ ̅ depend on (𝑙𝑐𝑜𝑛𝑠)𝑞 and 𝓉𝑛, and 𝐴𝑆𝑎 0.01
𝑠𝑢𝑟  sampled 

ground motions for the spectral period 0.01 sec.  
b. 𝑃(𝑑𝑐ℎ𝑖𝑚𝑛𝑒𝑦|𝑐𝑎𝑡𝑗, 𝓉𝑛, 𝓈,𝑚, 𝑟, (𝐺𝑀𝑀𝑚𝑒𝑑)𝑘 , (𝜙𝑠𝑠)𝑙  , (𝑙𝑓𝑟𝑎𝑔)𝑚

, (𝑙𝑐𝑜𝑛𝑠)𝑞) = 

1

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ ((1 − 𝑃𝑓

𝐶𝑆1)𝑖 × (𝑃𝑐ℎ)𝑖.

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑖

 

2. Repeat for every logic tree branch (Φ𝑠𝑠)𝑙 . 

ii. Repeat for every logic tree branch (𝐺𝑀𝑀𝑚𝑒𝑑)𝑘. 

b. Repeat for every synthetic catalogue 𝑐𝑎𝑡𝑗. 

3. Repeat for every site response region 𝓈. 

4. 𝑃( 0 >   | 𝓉, 𝓈,𝑚, 𝑟, 𝐺𝑀𝑀𝑚𝑒𝑑, 𝜙𝑠𝑠, 𝑙𝑓𝑟𝑎𝑔) =  
1

𝑁𝑐𝑎𝑡
∑ 𝑃( 0 >  𝑝|𝑐𝑎𝑡𝑗, 𝓉, 𝓈,𝑚, 𝑟, 𝐺𝑀𝑀𝑚𝑒𝑑, 𝜙𝑠𝑠 , 𝑙𝑓𝑟𝑎𝑔).
𝑁𝑐𝑎𝑡
𝑗   

5. 𝑃(𝑑𝑐ℎ𝑖𝑚𝑛𝑒𝑦| 𝓉, 𝓈,𝑚, 𝑟, 𝐺𝑀𝑀𝑚𝑒𝑑 , 𝜙𝑠𝑠 , 𝑙𝑓𝑟𝑎𝑔, 𝑙𝑐𝑜𝑛𝑠) = 
1

𝑁𝑐𝑎𝑡
∑ 𝑃(𝑑𝑐ℎ𝑖𝑚𝑛𝑒𝑦| 𝑐𝑎𝑡𝑗, 𝓉, 𝓈,𝑚, 𝑟, 𝐺𝑀𝑀𝑚𝑒𝑑 , 𝜙𝑠𝑠 , 𝑙𝑓𝑟𝑎𝑔, 𝑙𝑐𝑜𝑛𝑠).
𝑁𝑐𝑎𝑡
𝑗   
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BOX 9 IMPLEMENTATION OF BUILDING EXPOSURE PREPARATION 

1. Load the building exposure database from the original csv-file. This contains the 

location of each building (𝒙𝑏), as well as the PMF of typologies 𝑃(𝓉𝑏 = 𝓉𝑖). 

2. For each building 𝑏: 

a. Find the zone 𝓈𝑏 in which building 𝑏 is located, based on 𝒙𝑏 and the shapefiles of the 

site-response zonation. Care is taken to correctly assign buildings that lie in a ‘zone-

within-a-zone’ (see Figure 11). 

b. Obtain the contribution to the risk of building 𝑏 of each grid point defined for 𝓈𝑏. 

This is done by: 

i. Finding the four grid points surrounding building 𝑏. The contribution of all other 

grid points defined for zone 𝓈𝑏 is set to zero. 

ii. The four grid points (𝑞𝑙𝑒𝑓𝑡𝑢𝑝𝑝𝑒𝑟, 𝑞𝑟𝑖𝑔ℎ𝑡𝑢𝑝𝑝𝑒𝑟 , 𝑞𝑙𝑒𝑓𝑡𝑙𝑜𝑤𝑒𝑟 , 𝑞𝑟𝑖𝑔ℎ𝑡𝑙𝑜𝑤𝑒𝑟) define four 

bounds: 𝑅𝐷𝑥𝑙𝑒𝑓𝑡 , 𝑅𝐷𝑥𝑟𝑖𝑔ℎ𝑡 , 𝑅𝐷𝑦𝑙𝑜𝑤𝑒𝑟, 𝑅𝐷𝑦𝑢𝑝𝑝𝑒𝑟 . The contributions of the grid 

points are defined by: 

𝑐𝑞𝑙𝑒𝑓𝑡𝑢𝑝𝑝𝑒𝑟,𝑏 =
|𝑥𝑏 − 𝑅𝐷𝑥𝑟𝑖𝑔ℎ𝑡|

|𝑅𝐷𝑥𝑟𝑖𝑔ℎ𝑡 − 𝑅𝐷𝑥𝑙𝑒𝑓𝑡|
×

|𝑦 − 𝑅𝐷𝑦𝑙𝑜𝑤𝑒𝑟|

|𝑅𝐷𝑦𝑢𝑝𝑝𝑒𝑟 − 𝑅𝐷𝑦𝑙𝑜𝑤𝑒𝑟|
 

𝑐𝑞𝑟𝑖𝑔ℎ𝑡𝑢𝑝𝑝𝑒𝑟,𝑏 =
|𝑥𝑏 − 𝑅𝐷𝑥𝑙𝑒𝑓𝑡|

|𝑅𝐷𝑥𝑟𝑖𝑔ℎ𝑡 − 𝑅𝐷𝑥𝑙𝑒𝑓𝑡|
×

|𝑦 − 𝑅𝐷𝑦𝑙𝑜𝑤𝑒𝑟|

|𝑅𝐷𝑦𝑢𝑝𝑝𝑒𝑟 − 𝑅𝐷𝑦𝑙𝑜𝑤𝑒𝑟|
 

𝑐𝑞𝑙𝑒𝑓𝑡𝑙𝑜𝑤𝑒𝑟,𝑏 =
|𝑥𝑏 − 𝑅𝐷𝑥𝑟𝑖𝑔ℎ𝑡|

|𝑅𝐷𝑥𝑟𝑖𝑔ℎ𝑡 − 𝑅𝐷𝑥𝑙𝑒𝑓𝑡|
×

|𝑦 − 𝑅𝐷𝑦𝑢𝑝𝑝𝑒𝑟|

|𝑅𝐷𝑦𝑢𝑝𝑝𝑒𝑟 − 𝑅𝐷𝑦𝑙𝑜𝑤𝑒𝑟|
 

𝑐𝑞𝑟𝑖𝑔ℎ𝑡𝑙𝑜𝑤𝑒𝑟,𝑏 =
|𝑥𝑏 − 𝑅𝐷𝑥𝑙𝑒𝑓𝑡|

|𝑅𝐷𝑥𝑟𝑖𝑔ℎ𝑡 − 𝑅𝐷𝑥𝑙𝑒𝑓𝑡|
×

|𝑦 − 𝑅𝐷𝑦𝑢𝑝𝑝𝑒𝑟|

|𝑅𝐷𝑦𝑢𝑝𝑝𝑒𝑟 − 𝑅𝐷𝑦𝑙𝑜𝑤𝑒𝑟|
. 

 
c. Obtain the PMF of typologies 𝑃(𝓉𝑏 = 𝓉𝑖) (i.e. the probability of building 𝑏 belonging 

to typology 𝓉𝑖). 

3. The above step results in two matrices for each zone: 

a. A 2D matrix of size 𝑛𝑟𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠_𝑖𝑛_𝑧𝑜𝑛𝑒 × 𝑛𝑟𝑔𝑟𝑖𝑑𝑝𝑜𝑖𝑛𝑡𝑠_𝑖𝑛_𝑧𝑜𝑛𝑒 .  

b. A 2D matrix of size 𝑛𝑟𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠𝑖𝑛𝑧𝑜𝑛𝑒 × 𝑛𝑟𝑡𝑦𝑝𝑜𝑙𝑜𝑔𝑖𝑒𝑠𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝑓𝑖𝑒𝑙𝑑𝑤𝑖𝑑𝑒
. 

These matrices are saved and used in the integration step. 
 



 

 

TNO report | TNO2020 R11052 | 3  54 / 72 

  Second step: Integration 

3.3.2.1 Input files 

 

Lookup table exceedance values of damage and collapse states 

This lookup table is a complementary cumulative mass function (CCMF), which 

contains exceedance probabilities of six limit states   (three damage states and 

three collapse states, {𝐷𝑆1, 𝐷𝑆2, 𝐷𝑆3, 𝐶𝑆1, 𝐶𝑆2, 𝐶𝑆3}) of typologies 𝓉, for all site 

response regions 𝓈, logic tree ground motion branches 𝐺𝑀𝑀𝑚𝑒𝑑𝜙𝑠𝑠, logic tree 

fragility branches 𝑙𝑓𝑟𝑎𝑔, due to a hypothetical earthquake at rupture distances 𝑟𝑟𝑢𝑝 

and of magnitudes 𝑚 (𝑃( 0 >   | 𝓉, 𝓈,𝑚, 𝑟𝑟𝑢𝑝 , 𝐺𝑀𝑀𝑚𝑒𝑑𝜙𝑠𝑠, 𝑙𝑓𝑟𝑎𝑔 ) ).  

 

The lookup table also contains the probability of dying due to chimney collapse 

𝑃𝑑𝑐ℎ𝑖𝑚𝑛𝑒𝑦
 for the consequence logic tree branches 𝑙𝑐𝑜𝑛𝑠, for typologies 𝓉, all site 

response regions 𝓈, logic tree ground motion branches 𝐺𝑀𝑀𝑚𝑒𝑑𝜙𝑠𝑠, logic tree 

fragility branches 𝑙𝑓𝑟𝑎𝑔, due to a hypothetical earthquake at distances 𝑟𝑟𝑢𝑝 and 

magnitudes 𝑚. 

 

Exposure lookup table 

Lookup table containing per site response region 𝓈, the contribution of evaluation 

points 𝑞 to a building 𝑏 from the database 𝑐𝑞,𝑏(𝒙𝑏) and of every building the 

probability of belonging to a certain typology 𝑃(𝓉𝑏 = 𝓉𝑖). 𝑐𝑞,𝑏(𝒙𝑏) is computed in the 

exposure prep by bilinear interpolation of the location of the building 𝒙𝑏 to the 

surrounding evaluation points 𝑞. 

 

Consequence input file 

Input file containing per consequence branch 𝑙𝑐𝑜𝑛𝑠 for all typologies 𝓉, the 

probabilities of dying inside and outside, given the occurrence of one of the three 
collapse states, 𝑃𝑑𝑖𝑛𝑠𝑖𝑑𝑒|𝐶𝑆𝑖  and 𝑃𝑑𝑜𝑢𝑡𝑠𝑖𝑑𝑒|𝐶𝑆𝑖, where 𝐶𝑆𝑖 is one of the three collapse 

states {𝐶𝑆1, 𝐶𝑆2, 𝐶𝑆3}. 

 

Output rupture model (SSM) 

A 5D probability mass function (PMF) matrix of earthquake expectation values 

(𝑓(𝑞, 𝑡, 𝑚𝑚𝑎𝑥 , 𝑚, 𝑟
𝑟𝑢𝑝)) per evaluation point 𝑞, year 𝑡, maximum magnitude logic tree 

branch 𝑚𝑚𝑎𝑥, magnitude 𝑚, and distance 𝑟𝑟𝑢𝑝.  

3.3.2.2 Input parameters 

 
{ 

  "logictree": { 

    "Mmax": { 

"4.0": 0.08625, 

         "4.5": 0.4, 

         "5.0": 0.24375, 

         "5.5": 0.1125, 

         "6.0": 0.07875, 

         "6.5": 0.0525, 

         "7.0": 0.02625}, 

    "GMMMedian": { 

  "Upper": 0.3, 

  "CentralUpper": 0.3, 

  "CentralLower": 0.3, 

  "Lower": 0.1 
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   }, 

    "GMMPhiSS": { 

  "phi_ss_high": 0.5, 

  "phi_ss_low": 0.5 

  }, 

    "Fragility": { 

         "Middle": 0.66, 

         "Lower": 0.17, 

         "Upper": 0.17}, 

    "Consequence":{ 

         "Middle": 0.5, 

        "Lower": 0.25, 

         "Upper": 0.25}, 

  "basedir": <string, full path to directory containing all 

input files>, 

  "ssmmrdistributionsfile": <string, name of the input file>, 

  "consequencefile": <string, name of the input file>, 

  "building_prep_file": <string, name of the input file>, 

  "gmmdmpoefile": <string, name of the input file>, 

  "risk_outputfile": <string, name of the output file>, 

} 

3.3.2.3 Implementation 

 

Similar as in the hazard integrator, all calculations are carried out per site response 

region 𝓈. However, the assignment of evaluation points 𝑞|𝓈𝑖  to site response regions 

𝓈𝑖 is already done in the exposure preparation and can therefore be imported from 

the exposure lookup table.  

 

Computation of the mean occurrence probabilities of earthquakes 

𝑓𝑚𝑒𝑎𝑛(𝑞, 𝑡,𝑚, 𝑟𝑟𝑢𝑝) of the 𝑚𝑚𝑎𝑥 logic tree branches is computed by matrix 

multiplication. Similarly, the mean exceedance probabilities of limit states 

𝑃𝑚𝑒𝑎𝑛( 0 >   | 𝓉,𝑚, 𝑟𝑟𝑢𝑝), where  = {𝐷𝑆1, 𝐷𝑆2, 𝐷𝑆3, 𝐶𝑆1, 𝐶𝑆2, 𝐶𝑆3} and the mean 

probability of dying due to chimney collapse 𝑃𝑑𝑐ℎ𝑖𝑚𝑛𝑒𝑦
( 𝓉,𝑚, 𝑟, 𝑙𝑐𝑜𝑛𝑠) are also 

computed by matrix multiplication, computing the mean over the GMMMedian 

𝐺𝑀𝑀𝑚𝑒𝑑, GMMPhiSS 𝜙𝑠𝑠 and fragility 𝑙𝑓𝑟𝑎𝑔 logic tree branches, by using the logic 

tree weights 𝑃(𝐺𝑀𝑀𝑚𝑒𝑑) and 𝑃(𝜙𝑠𝑠) and 𝑃(𝑙𝑓𝑟𝑎𝑔), defined in the input parameter 

file.  

 

𝑃𝑚𝑒𝑎𝑛( 0 >   | 𝓉,𝑚, 𝑟𝑟𝑢𝑝) is the mean probability of exceeding limit state  , given 

the occurrence of a hypothetical earthquake at rupture distance  𝑟𝑟𝑢𝑝 of magnitude 

𝑚. To determine the probability of exceeding limit states due to the forecasted 

earthquake occurrence 𝑃( 0 >   |𝓉, 𝑞, 𝑡) as a result of gas production, we combine 

the 𝑃𝑚𝑒𝑎𝑛 with the mean PMF of earthquake occurrence 𝑓𝑚𝑒𝑎𝑛(𝑞, 𝑡,𝑚, 𝑟
𝑟𝑢𝑝) and 

integrate over the magnitudes and distances.  

 

The consequence of building collapse {𝐶𝑆1, 𝐶𝑆2, 𝐶𝑆3} is computed as Local 

Personal Risk (LPR), the probability of a hypothetical person dying 𝑃𝑑   due to 

building collapse. To compute this, we make use of the consequence input file, 

which contains the probabilities of dying 𝑃𝑑  inside or outside, given one of the 

collapse states  {𝐶𝑆1, 𝐶𝑆2, 𝐶𝑆3}, per typology 𝓉 and per consequence logic tree 

branch 𝑙𝑐𝑜𝑛𝑠 . The probability of dying due to chimney collapse  𝑃𝑑𝑐ℎ𝑖𝑚𝑛𝑒𝑦
 is already 

computed in the preparation script and imported through the lookup table.  
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The probability of dying inside and outside due to gas production is then computed, 

by combining the 𝑃𝑑 ’s from the consequence input file with the probability of 

exceedance of the limit states 𝑃( 0 >   |𝓉, 𝑞, 𝑡). Then, the mean probabilities of 

dying, inside, outside, and due to chimney collapse over the consequence logic tree 

branches 𝑙𝑐𝑜𝑛𝑠  are computed by matrix multiplication with the logic tree weights 

𝑃(𝑙𝑐𝑜𝑛𝑠). We now have an 𝐿𝑃𝑅𝑖𝑛𝑠𝑖𝑑𝑒, 𝐿𝑃𝑅𝑜𝑢𝑡𝑠𝑖𝑑𝑒 and 𝐿𝑃𝑅𝑐ℎ𝑖𝑚𝑛𝑒𝑦 per typology 𝓉, 

evaluation point 𝑞 and year 𝑡. To compute the total 𝐿𝑃𝑅, we assume the 

hypothetical person to be 99% of the time inside the house and 1% of the time 

within 5 m outside the house. 

 

The last step is to determine the 𝐿𝑃𝑅(𝑏, 𝑡), the local personal risk per actual building 

𝑏 in the Groningen area per year 𝑡. For this we use the exposure lookup table, 

which contains the contribution of evaluation points 𝑞 to a building 𝑏 from the 

database 𝑐𝑞,𝑏(𝒙𝑏) and of every building 𝑏 the probability of belonging to a certain 

typology 𝑃(𝓉𝑏 = 𝓉𝑖).   

 

The numerical implementation is described in Box 10.  
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BOX 10 IMPLEMENTATION OF RISK INTEGRATION 

1. Import 𝑓(𝑞, 𝑡,𝑀𝑚𝑎𝑥,𝑚, 𝑟) and associated grids 𝑞, 𝑡, 𝑀𝑚𝑎𝑥,𝑚, 𝑟
𝑟𝑢𝑝. 

2. Import  evaluation points 𝑞𝓈 per site response region 𝓈. 

3. For every site response region 𝓈: 

a. Extract the earthquake PMF only for those evaluation points 

𝑓( 𝑞𝓈 , 𝑡,𝑀𝑚𝑎𝑥,𝑚, 𝑟
𝑟𝑢𝑝). 

b. Compute the mean earthquake PMF over the 𝑀𝑚𝑎𝑥 logic tree branches:  

𝑓𝑚𝑒𝑎𝑛( 𝑞|, 𝑡, 𝑚, 𝑟
𝑟𝑢𝑝) =∑𝑃(𝑀max𝑙)𝑓( 𝑞𝓈 , 𝑡,𝑀𝑚𝑎𝑥𝑙

,𝑚, 𝑟𝑟𝑢𝑝)

𝑙

. 

c. Import  𝑃( 0 >   | 𝓉,𝑚, 𝑟, 𝐺𝑀𝑀𝑚𝑒𝑑, 𝜙𝑠𝑠, 𝑙𝑓𝑟𝑎𝑔) and 

𝑃𝑑𝑐ℎ𝑖𝑚𝑛𝑒𝑦( 𝓉, 𝑚, 𝑟, 𝐺𝑀𝑀𝑚𝑒𝑑 , 𝜙𝑠𝑠, 𝑙𝑓𝑟𝑎𝑔, 𝑙𝑐𝑜𝑛𝑠) from the risk lookup table. Both 

are dependent on site response region 𝓈. 

d. Compute the mean over the logic tree branches of the distributions : 

𝑃𝑚𝑒𝑎𝑛( 0 >   | 𝓉,𝑚, 𝑟𝑟𝑢𝑝)  =

∑ ∑ ∑ 𝑃 (𝐺𝑀𝑀𝑚𝑒𝑑𝑗
)  𝑃(𝜙𝑠𝑠𝑙) 𝑃 (𝑙𝑓𝑟𝑎𝑔𝑘

)  𝑃( 0 >𝑘𝑙𝑗

  | , 𝑚, 𝑟𝑟𝑢𝑝, 𝐺𝑀𝑀𝑚𝑒𝑑𝑗
, 𝜙𝑠𝑠𝑙 , 𝑙𝑓𝑟𝑎𝑔𝑘

), 

 

  𝑃𝑑𝑐ℎ𝑖𝑚𝑛𝑒𝑦
( 𝓉,𝑚, 𝑟𝑟𝑢𝑝 , 𝑙𝑐𝑜𝑛𝑠) = ∑ ∑ ∑ 𝑃 (𝐺𝑀𝑀𝑚𝑒𝑑𝑗

)  𝑃(𝜙𝑠𝑠𝑙
) 𝑃 (𝑙𝑓𝑟𝑎𝑔𝑘) 𝑘𝑙𝑗  

𝑃𝑑𝑐ℎ𝑖𝑚𝑛𝑒𝑦
( 𝓉,𝑚, 𝑟𝑟𝑢𝑝, 𝐺𝑀𝑀𝑚𝑒𝑑𝑗

, 𝜙𝑠𝑠𝑙
, 𝑙𝑓𝑟𝑎𝑔𝑘 , 𝑙𝑐𝑜𝑛𝑠). 

e. Combine with PMF of earthquake occurrence: 

𝑃( 0 >   |𝓉, 𝑞𝓈 , 𝑡) =  ∑ ∑ 𝑃𝑚𝑒𝑎𝑛( 0 >𝑚𝑛

   |𝓉,𝑚𝑛, 𝑟
𝑟𝑢𝑝

𝑚) 𝑓𝑚𝑒𝑎𝑛(𝑞𝓈 , 𝑡, 𝑚𝑛, 𝑟
𝑟𝑢𝑝

𝑚) and 𝑃𝑑𝑐ℎ𝑖𝑚𝑛𝑒𝑦(𝓉, 𝑞𝓈 , 𝑡, 𝑙𝑐𝑜𝑛𝑠) =

 ∑ ∑  𝑃𝑑𝑐ℎ𝑖𝑚𝑛𝑒𝑦( 𝓉,𝑚𝑛, 𝑟𝑚, 𝑙𝑐𝑜𝑛𝑠)𝑓𝑚𝑒𝑎𝑛(𝑞𝓈 , 𝑡, 𝑚𝑛, 𝑟𝑚).𝑚𝑛  

f. For every consequence branch 𝑙𝑐𝑜𝑛𝑠𝑜: 

i. For every typology 𝓉𝑝: 

1. 𝑃𝑑𝑖𝑛𝑠𝑖𝑑𝑒(𝑞𝓈 , 𝑡) =  [𝑃( 0 > 𝐶𝑆1  | 𝑞𝓈 , 𝑡) −  𝑃( 0 >

𝐶𝑆2  | 𝑞𝓈 , 𝑡)] ∗  𝑃𝑑𝑖𝑛𝑠𝑖𝑑𝑒|𝐶𝑆1 + [𝑃( 0 > 𝐶𝑆2  | 𝑞𝓈 , 𝑡) −

 𝑃( 0 > 𝐶𝑆3  | 𝑞𝓈 , 𝑡)] ∗  𝑃𝑑𝑖𝑛𝑠𝑖𝑑𝑒|𝐶𝑆2 +  𝑃( 0 > 𝐶𝑆3  | 𝑞𝓈, 𝑡) ∗

 𝑃𝑑𝑖𝑛𝑠𝑖𝑑𝑒|𝐶𝑆3. 

2. 𝑃𝑑𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝑞𝓈 , 𝑡) =  [𝑃( 0 > 𝐶𝑆1  | 𝑞𝓈 , 𝑡) −  𝑃( 0 >

𝐶𝑆2  | 𝑞𝓈 , 𝑡)] ∗  𝑃𝑑𝑜𝑢𝑡𝑠𝑖𝑑𝑒|𝐶𝑆1 + [𝑃( 0 > 𝐶𝑆2  |𝑞𝓈 , 𝑡) −

 𝑃( 0 > 𝐶𝑆3  |𝑞𝓈, 𝑡)] ∗  𝑃𝑑𝑜𝑢𝑡𝑠𝑖𝑑𝑒|𝐶𝑆2 +  𝑃( 0 > 𝐶𝑆3  | 𝑞𝓈, 𝑡) ∗

 𝑃𝑑𝑜𝑢𝑡𝑠𝑖𝑑𝑒|𝐶𝑆3. 

All above probabilities are dependent on 𝑙𝑐𝑜𝑛𝑠𝑜,  𝓉𝑝 and 𝓈: 
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 BOX 10 IMPLEMENTATION OF RISK INTEGRATION (CONT.) 

g. Compute inside, outside and chimney local personal risk:  

𝐿𝑃𝑅𝑖𝑛𝑠𝑖𝑑𝑒(𝓉, 𝑞𝓈 , 𝑡) =∑𝑃(𝑙𝑐𝑜𝑛𝑠𝑜)  𝑃𝑑𝑖𝑛𝑠𝑖𝑑𝑒
𝑜

(𝓉, 𝑞𝓈 , 𝑡, 𝑙𝑐𝑜𝑛𝑠𝑜), 

𝐿𝑃𝑅𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝓉, 𝑞𝓈 , 𝑡) =∑𝑃(𝑙𝑐𝑜𝑛𝑠𝑜)  𝑃𝑑𝑜𝑢𝑡𝑠𝑖𝑑𝑒
𝑜

(𝓉, 𝑞𝓈 , 𝑡, 𝑙𝑐𝑜𝑛𝑠𝑜), 

𝐿𝑃𝑅𝑐ℎ𝑖𝑚𝑛𝑒𝑦(𝓉, 𝑞𝓈 , 𝑡) =∑𝑃(𝑙𝑐𝑜𝑛𝑠𝑜)  𝑃𝑑𝑐ℎ𝑖𝑚𝑛𝑒𝑦

𝑜

(𝓉, 𝑞𝓈 , 𝑡, 𝑙𝑐𝑜𝑛𝑠𝑜). 

h. Compute total local personal risk: 

𝐿𝑃𝑅(𝓉, 𝑞𝓈 , 𝑡) =  0.99 𝐿𝑃𝑅𝑖𝑛𝑠𝑖𝑑𝑒(𝓉, 𝑞𝓈 , 𝑡)

+ 0.01[𝐿𝑃𝑅𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝓉, 𝑞𝓈 , 𝑡) + 𝐿𝑃𝑅𝑐ℎ𝑖𝑚𝑛𝑒𝑦(𝓉, 𝑞𝓈 , 𝑡)]. 

5. Repeat for every site response region 𝓈 and save the resulting separate matrices per site 

response region 𝓈: 𝑃( 0 >   |𝓉, 𝑞𝓈 , 𝑡, 𝓈) and 𝐿𝑃𝑅(𝓉, 𝑞𝓈 , 𝑡, 𝓈). 

6. For every site response region 𝓈: 

a. 𝐿𝑃𝑅(𝓉, 𝑏𝓈 , 𝑡) = ∑ 𝐿𝑃𝑅 (𝓉, 𝑞𝓈𝑗, 𝑡)  𝑐𝑞𝓈𝑗,𝑏𝓈(𝒙𝑏𝓈),𝑗  

where 𝑏𝓈 are the buildings positioned within the site response region 𝓈. 
7. Sum over all the site response regions: 𝐿𝑃𝑅(𝓉, 𝑏, 𝑡) = ∑ 𝐿𝑃𝑅(𝓉, 𝑏𝓈 , 𝑡, 𝓈).𝑖  

8. Compute the local personal risk per building from the database: 

𝐿𝑃𝑅(𝑏, 𝑡) =∑𝑃(𝓉𝑏 = 𝓉0)𝑝 𝐿𝑃𝑅(𝓉𝑝, 𝑏, 𝑡)

𝑝

. 
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 Appendix A: Numerical methods 

A.1  Numerical integration: Monte Carlo vs quadrature 

At many points in the TNO Model Chain, a function needs to be evaluated with a 

(probability) distribution as input rather than a scalar value. When performing such 

an operation on a distribution, the aim is obtain the mean value (i.e. the expectation 

value), which is found by integrating over the (probability) distribution. 

Such an integration can be performed through different methods. In the TNO Model 

Chain, this is achieved through direct numerical integration. Here, we compare 

direct numerical integration to another method that is often applied: Monte Carlo 

integration. 

A.1.1 Monte Carlo integration 

Evaluating an integral through Monte Carlo integration is done by drawing a sample 

from the input distribution, evaluating the function, and storing the result. This 

process is repeated many times. The result in then simply the mean of all individual 

function evaluations: 

𝑆 =
1

𝑁
∑𝑔(𝑥𝑖),

𝑁

𝑖=1

 

where 𝑥𝑖 is a random sample from the input distribution, 𝑔 is the function to be 

evaluated, and 𝑁 is the number of samples used. 

Monte Carlo integration is a non-deterministic approach to integration, as each 

realization of the integration provides a different result (i.e. if a function is evaluated 

1 million times to obtain a mean result, and this whole process is repeated, the 

mean result will not be exactly identical). It is usually applied when direct numerical 

integration becomes unfeasible due to the number of integration points involved. 

This is often the case when the number of dimensions becomes large, resulting in 

an impractical /impossible number of integration points. When enough samples are 

used, the resulting mean can be brought arbitrarily close to the ground truth. 

A.1.2 Quadrature 

The classical approach to numerically evaluating  an integral is through numerical 

quadrature, effectively using a Riemann sum (or a simple extension to higher 

dimensions). The probability distribution is discretized and transformed into a 

probability mass function. For each member of the probability mass function, the 

function is evaluated and multiplied with its mass 𝜇𝑖. Finally, all individual members 

are summed to obtain the integration result: 

𝑆 =  ∑𝑔(𝑥𝑖)𝜇(𝑥𝑖)

𝑖

, 

where 𝑥𝑖 is a member of the discretized input distribution,𝑔 is the function to be 

integrated, and 𝜇 is the probability mass function. 

A.1.3 Example 

As an example, consider the function 𝑔(𝑥) = 𝑥2. Let   be normally distributed with a 

mean value of 15 and a standard distribution of 2. The function to be evaluated is 

then: 

https://en.wikipedia.org/wiki/Riemann_sum
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𝐸(𝑔( )) = ∫𝑔( )𝑓𝑈( )𝑑 ,

 

𝛺𝑢

 

where 𝑓𝑈 is de probability density function of   and Ω𝑢 its domain.  

 

Figure 12: The probability density function of the input distribution. 

Analytically, the function integrates to: 

𝐸(𝑔( )) = ∫ 𝑥2  
1

2√2𝜋
exp (−

1

2
 (
𝑥 − 15

2
)
2

)𝑑𝑥 = 229.0
∞

−∞

. 

Note 𝑚𝑒𝑎𝑛(𝑔( )) ≠ 𝑔(𝑚𝑒𝑎𝑛( )) since 𝑔(𝑥) is not a linear function. 

 

A.1.3.1  Monte Carlo integration demonstration 

For the sake of this example, the integration will initially be performed with 10 

samples: 

Sample nr (𝑖) Sample (𝑥𝑖) Function value (𝑥𝑖
2) 

1 15.0496214   226.49110416 

2 15.42085428 237.80274676 

3 12.07933037 145.91022219 

4 16.08003403 258.56749443 

5 19.17949013 367.85284153 

6 10.62454195 112.88089172 

7 18.41537726 339.12611972 

8 16.95214992 287.37538685 

9 13.14547428 172.80349399 

10 16.08384112 258.68994521 

 Total 2407.50024656 

Integration result = Total/nr_samples 240.750024656 

 

This is a relatively poor approximation of the analytical result. However, with an 

increasing number of samples, the approximation becomes increasingly better: 

Number of samples Monte Carlo integration result 

100 227.26850012748906 

1000 228.00546769993346 

10000 229.31856812990537 

100000 229.24401152063456 

1000000 229.06487488734854 

10000000 229.0212108127112 
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 100000000 229.0012567734311 

1000000000 228.99640057412972 

  

A.1.3.2  Direct numerical integration demonstration: 

In order to perform the numerical integration, the input distribution first needs to be 

transformed into a probability mass function, 𝑝𝑋(𝑥). This means that the domain of 

integration needs to be finite (note that this step was not required for Monte Carlo 

integration). Based on Figure 12, the integration domain is chosen as [6,24]. An 

initial choice for the discretization (with 𝑑𝑥 = 2) looks like this: 

 

Integration 

point (𝑥𝑖) 

Function value (𝑥𝑖
2) Probability mass 

function 𝑝𝑋(𝑥𝑖) 

(𝑥𝑖)
2𝑝𝑋(𝑥𝑖) 

6 36 1.59837E-05 0.000575 

8 64 0.000872683 0.055852 

10 100 0.0175283 1.75283 

12 144 0.129517596 18.65053 

14 196 0.352065327 69.0048 

16 256 0.352065327 90.12872 

18 324 0.129517596 41.9637 

20 400 0.0175283 7.01132 

22 484 0.000872683 0.422378 

24 576 1.59837E-05 0.009207 

   +___________ 

Total   228.994429 

 

An alternative discretisation with domain [5,25] and 𝑑𝑥 = 1 gives: 

Integration 

point (𝑥𝑖) 

Function value (𝑥𝑖
2) Probability mass 

function 𝑝𝑋(𝑥𝑖) 

(𝑥𝑖)
2𝑝𝑋(𝑥𝑖) 

5 25 7.4336E-07 0.000018584 

6 36 7.9919E-06 0.00028771 

7 49 6.6915E-05 0.00327884 

8 64 0.00043634 0.02792585 

9 81 0.00221592 0.17948986 

10 100 0.00876415 0.87641502 

11 121 0.02699548 3.26645347 

12 144 0.0647588 9.32526689 

13 169 0.12098536 20.4465262 
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 14 196 0.17603266 34.502402 

15 225 0.19947114 44.8810065 

16 256 0.17603266 45.0643618 

17 289 0.12098536 34.9647697 

18 324 0.0647588 20.9818505 

19 361 0.02699548 9.74536946 

20 400 0.00876415 3.5056601 

21 441 0.00221592 0.97722257 

22 484 0.00043634 0.21118921 

23 529 6.6915E-05 0.03539809 

24 576 7.9919E-06 0.00460332 

25 625 7.4336E-07 0.0004646 

   +___________ 

Total   228.999987 

 

The example considered here demonstrates that if the number of samples is equal 

to the number of integration points, the direct numerical integration method yields a 

better approximation of the analytical result than the Monte Carlo integration 

method.  
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A.2  Discretization options 

In order to apply direct numerical integration effectively and efficiently to a given 

problem, the discretization of the input distribution needs to be chosen carefully.  

The fundamental question is: How well does the numerical (discretized) 

representation approximate the analytical (continuous) solution, while using a 

reasonable/computable number of operations. To achieve this, it is useful to again 

consider the general Riemann sum that is being computed: 

𝑆 =  ∑𝑔(𝒙𝑖)𝑝𝑋(𝒙𝑖),

𝑖

 

where 𝒙𝑖 are the discrete sample points of the input space, 𝑔(𝒙) is the function to 

be evaluated, and 𝑝𝑋(𝒙𝑖) is the probability mass function associated with the input 

space. Note that 𝒙𝑖 may be a scalar value or a vector of any length, depending on 

the functional form of 𝑔(𝒙).  

 

The contribution of each individual grid point 𝒙𝑖 to the total integral 𝑆 is the product 

of the function value 𝑔(𝒙𝑖) and the probability mass 𝑝𝑋(𝒙𝑖). The probability mass is 

given by:  

𝑝𝑋(𝒙𝑖) = 𝑓𝑋(𝒙𝑖)𝑑𝒙𝑖 , 

where 𝑓𝑋(𝒙𝑖) is the value of the probability density function and 𝑑𝒙𝑖 is the measure 

of the underlying set. This measure can be thought of as the length of the interval in 

1D, the area in 2D, the volume in 3D, etc. 

 

A.2.1 Choice of domain 

The domain of each dimension of 𝒙 should be chosen in such a way that it 

sufficiently encompasses the underlying distribution. Ideally, ∑ 𝑝𝑋(𝒙𝑖)𝑖 = 1. 

However, in practice many distributions (such as the normal distribution) have an 

infinite domain, which means that a choice of domain is inevitable, and that 

∑ 𝑝𝑋(𝒙𝑖)𝑖 < 1. An often applied rule of thumb is that the domain should be chosen in 

such a way that further extension of the domain does not appreciably affect the final 

result. To account for the fact that practicality often dictates a finite domain, the 

integral is commonly normalized: 

𝑆 =
∑ 𝑓(𝒙𝑖)𝑝𝑋(𝒙𝑖)𝑖

∑ 𝑝𝑋(𝒙𝑖)𝑖

. 

A.2.2. Number of grid points 

The number of grid points is another important choice. Since the number of 

dimensions of a probability distribution in the TNO Model Chain often exceeds 5, it 

becomes important not to use more grid points per dimension than are strictly 

needed. For example, it may be tempting to use 100 grid points per dimension. A 

one-dimensional normal distribution then looks like: 
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The 2D-extension of the same normal distribution looks like this: 

 
However, the so-called curse of dimensionality prevents this gridding from 

remaining feasible in higher dimensions. Storing a single precision number requires 

8 bytes of memory, making the 1D probability mass function 800 bytes (~1 kB). The 

2D probability mass function requires 100 times as much (~0.08 MB). An extension 

to 3D would require ~8 MB, and a 4D extension would require 800 MB. This is still 

reasonable for a modern computer. However, further extension would become more 

difficult, as a 5D extension would require 80 GB which is not feasible on most 

systems. 

 

Therefore, in order to computational effort reasonable, and memory load physically 

possible, it is advisable to keep the number of points along each dimension as small 

as possible. Again, the often applied rule of thumb is that the discretization should 

be chosen in such a way that further refinement of the grid does not appreciably 

affect the final result. 
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 A.2.3 Spacing of points 

By using the Riemann approximation, the underlying assumption is that the integral 

∫ 𝑔(𝒙)𝑓𝑿(𝒙)𝑑𝒙
𝒙𝑖+0.5𝑑𝒙

𝒙𝑖−0.5𝑑𝒙
 is reasonably well-approximated by 𝑔(𝒙𝑖)𝑝𝑋(𝒙𝑖). This is the 

case when the integrand is approximately linear over this domain. In general, this 

assumption becomes increasingly valid for smaller values of 𝑑𝑥, and therefore for a 

larger number of grid points within the same domain. For some functions, it is 

possible to achieve a better approximation of the analytical solution without 

increasing the number of grid points, but rather by changing their spacing within the 

domain from a linear spacing (the distance from one grid point to the next is defined 

by a constant increment) to a logarithmic spacing (the distance from one grid point 

to the next is defined by a constant factor). For example, a function that benefits 

from integration using log-spacing is: 

∫ √log10(𝑥) 𝑑𝑥
10

1

.  

Analytically: 

∫ √log10(𝑥) 𝑑𝑥
10

1

= 10 −
1

2
 erfi(ln(10))√

𝜋

ln(10)
 ≈  7.2105… 

 

Integration point 

(𝑥𝑖) 

Function value 

√log10(𝑥) 

𝑑𝑥 

(linear) 

√log10(𝑥) 𝑑𝑥 

1.25 0.311303731 0.5 0.155652 

1.75 0.492988893 0.5 0.246494 

2.25 0.593449676 0.5 0.296725 

…    

…    

9.75 0.994487 0.5 0.497244 

   +___________ 

  Integral 7.223931 

 

Integration point 

(𝑥𝑖) 

Function value 

√log10(𝑥) 

𝑑𝑥 

(logarithmic) 

√log10(𝑥) 𝑑𝑥 

1.06605 0.166667 0.136464 0.022744 

1.211528 0.288675 0.155086 0.044769 

1.376857 0.372678 0.17625 0.065684 

…    

…    

9.380419 0.986013 1.200775 1.18398 

   +___________ 

  Integral 7.209009 

 

Here, the linearly spaced numerical integral gives an error of ~0.18% while the log-

spaced integral gives an error of ~0.02%, which is an order of magnitude less. 
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 A.2.4 Summarizing 

In order to numerically integrate a given function, three fundamental choices need 

to be made: 

1. Which domain should be considered (i.e. where should the 

integration grid start and stop)? 

2. How many grid points are required to adequately approximate the 

true value? 

3. How should the grid points be spaced within the domain to 

adequately approximate the true value? 

In many cases, the answers to these questions are not immediately obvious, and 

require careful testing and the analysis to be well-defined. 
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 Appendix B: Follow-up actions external review  

Action 

No. 

Priority Find and Action Comment Completed 

/ to-do / no 

follow up 

[RA-1] High Align the specified version 

numbers for external 

packages across the 

packages and 

environments of the system 

and implement 

mechanisms to exert 

control over these versions 

in the future. 

- Completed 

[RA-2] Medium Refactor the framework 

classes in the ssm package 

to clearly separate code for 

different versions of the 

models. Similar refactorings 

are recommended for the 

Reader class in the ha 

zard_risk_prep package. 

Classes are separated but 

follow the following 

philosophy: inherit as much 

as possible. Classes inherit 

from parent classes 

whenever possible for two 

reasons: 1) avoid duplicate 

code, 2) make explicit how 

models overlap 

No 

immediate 

follow up 

[RA-3] Low Refactor the class design 

for assessments in the 

hazardintegrator and 

riskintegrator packages with 

subclasses. 

Matter of style, but no 

inherently quality change. 

No 

immediate 

follow up 

[RA-4] Low Deduplicate the 

SiteResponseRegionsData 

classes present in both the 

hazardintegrator and 

riskintegrator packages by 

moving one copy to the 

chainutils package. 

- Planned for 

development 

cycle 2021 

[RA-5] Low Remove the obsolete code 

module 

json_generator_logictree.py 

in the riskintegrator 

package, or document its 

use. 

Will be documented Planned for 

development 

cycle 2021 

[RA-6] Low Move each class into a 

separate code file to 

improve transparency of the 

codebase. 

Not recommended practice 

(not part of PEP). Matter of 

style. 

No 

immediate 

follow up 

[RA-7] Low Consider refactoring more 

non-OO code into the OO 

design. 

The framework is 

specifically modular to allow 

multi-paradigm 

programming. Within 

No 

immediate 

follow up 
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 modules, the coding style is 

consistent.  

[RA-8] Medium Use a static analysis tool 

(such as pylint) in the local 

development environment 

and as a quality gate on the 

continuous integration 

server to be warned about 

violations of standards in 

the code. 

We opt to use analysis 

provided by our IDE 

(PyCharm). 

No 

immediate 

follow up 

[RA-9] Low Review the appropriate use 

of exception types, in 

particular instances of 

NotImplementedError. 

- Planned for 

development 

cycle 2021 

[RA-10] Medium Provide docstrings for 

classes detailing the class 

attributes and methods. 

- Planned for 

development 

cycle 2021 

[RA-11] Low Use the docstring of 

methods to detail the 

dimensions of 

multidimensional numpy 

arrays where applicable. 

This can be useful in some 

cases, but in practicality 

has never proven useful for 

this project and is error-

prone. 

No 

immediate 

follow up 

[RA-12] Low Review the naming of 

variable, class, and function 

names and align them with 

Python standards. 

- Planned for 

development 

cycle 2021 

[RA-13] Low Review cases of code 

duplication and, where 

appropriate, factor out 

common code to classes or 

methods. 

Continued point of 

attention, but can always 

improve. 

No 

immediate 

follow up 

[RA-14] Medium Review reported cases of 

high complexity and, where 

appropriate, refactor the 

code to a more modular 

structure. 

Continued point of 

attention, but can always 

improve. 

No 

immediate 

follow up 

[RA-15] Low Review class structures for 

use of public and private 

methods, as well as further 

opportunities to modularise 

the code through use of 

inheritance. 

In Python, nothing is truly 

private. No benefit 

expected in changing the 

approach here 

No 

immediate 

follow up 

[RA-16] Low Review hardcoded 

parameters and move 

those that are subject to 

potential future change to 

configuration files. 

Parameters are only 

hardcoded when they are 

part of a model 

specification 

No 

immediate 

follow up 

[RA-17] Low Document the expected 

format of the input and 

output files, including the 

expected physical units, 

- Planned for 

development 

cycle 2021 
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 see Table 6-1 and Table 6-

2. 

[RA-18] Low Add units to the headers of 

the input files defined in 

Table 6-1. 

- Planned for 

development 

cycle 2021 

[RA-19] Medium Implement validation of 

expected type and unit of 

data in methods that load 

the input files, raising 

exceptions early in case of 

unexpected data. This 

would also address all 

cases where data is loaded 

by an assumed column 

order. 

- Planned for 

development 

cycle 2021 

[RA-20] Low Review the source code for 

opportunities to implement 

classes for custom data 

types. 

Not planned to offer support 

for custom data types. We 

are trying to be as 'main 

stream' as possible to avoid 

support issues. 

No 

immediate 

follow up 

[RA-21] Low Use pytest fixture methods 

more widely to reduce the 

size of some long (>100 

lines) test methods. 

Continued point of 

attention, but can always 

improve. 

No 

immediate 

follow up 

[RA-22] Low Refactor test methods that 

contain multiple test cases. 

These methods should be 

parameterized, with test 

cases as arguments. 

- Planned for 

development 

cycle 2021 

[RA-23] Low Focus test cases more 

precisely on edge cases, 

rather than iterating over 

large grids of parameters. 

- Planned for 

development 

cycle 2021 

[RA-24] Medium Move methods that are only 

called by unit tests from 

production code to the test 

modules. 

- Planned for 

development 

cycle 2021 

[RA-25] Medium Improve test coverage 

where there are notable 

gaps, such as: the 

rupturemodel and chainutils 

repositories, and the 

CalibrationFramework 

BruteForce, 

HazardAssessment and 

RiskAssessment classes. 

- Planned for 

development 

cycle 2021 

[RA-26] Low Improve test coverage for 

intermediate steps of 

calculations. Where this is 

not practical due to the 

structure of the targeted 

Not always practically 

achievable.  

No 

immediate 

follow up 
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 code, refactoring should be 

considered. 

[RA-27] Medium Review code comments of 

complex methods and 

document their origin in the 

commentary where 

possible. 

- Planned for 

development 

cycle 2021 

[RA-28] Low Review the names of 

methods and ensure they 

accurately reflect the 

variable that is calculated or 

returned, in particular 

where the implementation 

of an equation in code 

differs from the 

documentation. 

- Planned for 

development 

cycle 2021 

[RA-29] Medium Review and update the 

documentation where 

complex steps of the 

calculations are not 

described in full detail in the 

implementation boxes. 

The code is written to be 

self-explanatory. Docstrings 

are there as a guide, not as 

main explanation. Complex 

calculations are 

implemented, which are 

inherently complex to 

understand. 

No 

immediate 

follow up 

[RA-30] Low Review exception handlers 

to ensure exceptions are 

consistently logged. 

All exceptions are logged in 

the platform framework. 

No 

immediate 

follow up 

 


