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Samenvatting 
 

De nieuwe Seismic Hazard Screening (SHS) methode zal bestaan uit een aantal kernelementen. Dit 

rapport beschrijft het voorgestelde ontwikkelingsproces, de methode en de resultaten voor één van 

deze kernelementen: het potentieel voor breukreactivatie. Uiteindelijk wordt dit kernelement 

gecombineerd met andere kernelementen en door EBN en TNO-AGE samengevoegd tot één nieuwe 

SHS-methode. In dit samenvoegingsproces kunnen wijzigingen worden aangebracht in de methoden, 

drempelwaarden en/of resultaten ten opzichte van de afzonderlijke kernelement rapporten. De 

methoden, waarden en resultaten die in het huidige rapport worden beschreven, moeten daarom 

als voorlopig worden beschouwd. 

 

Door druk- en temperatuursveranderingen in het reservoir veranderen de spanningen in de 

ondergrond. De effectieve spanningsveranderingen, genormaliseerd naar druk- en 

temperatuursveranderingen, kunnen uitgedrukt worden als een functie van dip van een breuk, 

grootte van de afgekoelde en/of op druk gebrachte regio in het reservoir, en de genormaliseerde 

juxtapositie van de breuk. In deze studie zijn type curves gecompileerd voor breukreactivatie 

onder de operationele condities. De type curves zijn geïntegreerd in de screening tool en worden 

gebruikt om projecten met laag en verhoogd potentieel voor breukreactivatie te onderscheiden. 

 

Drie voorbeelden gebaseerd op huidige geothermische projecten zijn gebruikt om de screening tool 

te testen. De drie voorbeelden zijn gespreid gekozen over Nederland, en hebben allen een project-

specifieke seismische risico-analyse uitgevoerd. In twee van de drie gevallen kwam uit de screening 

tool een verhoogd potentieel op breukreactivatie. De project-specifieke analyse had echter 

aangetoond dat het potentieel laag was. Het verschil kon herleid worden tot het feit dat in het 

screening tool een conservatieve aanname zit voor het in-situ spanningsregime, gebaseerd op West 

Nederland. Te overwegen valt om het screening tool aan te passen met meer specifieke in-

situspanningsregimes per platform of basin. Verder wordt voorgesteld om onzekerheden en 

stochastische analyse mee te nemen. Dit kan onderdeel zijn van de toekomstige locatie-specifieke 

evaluatie. 

 

Figure 1-1 Inputscherm van de screening tool  

Depth (m) 2000

Reservoir thickness (m) 100

Offset fault (m) (positive for "normal" fault, 

negative for "reverse" fault)
25

(Reservoir T minus injection T) (C) 40

(Injector FBHP - Reservoir pressure) (bar) 10

Distance injector - fault (m) 500

Closest distance cold front - fault (m) 0

Result of screening calculations

There is LOW risk of fault reactivation

SCU (conservative upper limit) 0.972

Temperature contribution 99%

Pressure contribution 1%
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1 Introduction 
 

The Ministry of Economic Affairs and Climate Policy has requested EBN and TNO to develop a new 

method to assess the seismic risk for onshore geothermal projects of the Netherlands. The previous 

guideline by IF/Q-Con (2016) “Defining the Framework for Seismic Hazard Assessment in 

Geothermal Projects V0.1” (Q-Con & IF Technology, 2016) was developed in 2016 and should be 

updated to the current state of the geothermal industry.  

 The new Seismic Hazard Screening (SHS) method will consist of a number of key-elements. This 

report describes the suggested development process, method and results for one of these key 

elements: the fault reactivation potential. Eventually, this key-element will be combined with 

other key-elements and merged into a single, new SHS method by EBN and TNO-AGE. In this 

merging process, changes may be made to the methods, values and results as described in the 

individual key-element reports. The methods, values and results described in the current report 

should therefore be regarded as preliminary. 

In the development of the proposal for the new SHS method, it was concluded that indicative 

calculations should not be part of the to-be-developed Seismic Hazard Screening (SHS), but can be 

used as insight into the relative importance of the different factors, especially operating conditions 

ΔT and ΔP, and under which conditions a geothermal project would still pose a “low” seismic 

hazard. The work is a generalization to arbitrary reservoirs of a published (analytical) SHA 

methodology (van den Hoek & Poessé, 2021) that was recently applied to several geothermal field 

cases in The Netherlands.  

Reservoir depletion, pressurization, and/or cooling will result in stress changes. These stress 

changes will exhibit local concentrations along juxtaposed faults, see Figure 1-1 below for an 

example (cooling). This is not unlike the case made for depleted gas fields (van den Bogert & van 

Eijs, 2020). In this figure nt and nn are the induced changes in effective shear and normal stress 

along the fault, respectively. 
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Figure 1-1 Dimensionless effective stress change as a function of cooling along a fault with offset. Green line: normal effective 

stress, red line: shear stress. 

 

The effective stress changes (normalized to depletion or cooling) can be expressed as a function of 

fault dip, size of the cooled and / or pressurised zone around injector, and normalized fault 

juxtaposition.   

Within a conservative approach, we apply a “worst-case” fault dip, which for a friction angle of 30 

is equal to 0.6 for all faults. This leaves us to study the impact of size of the cooled and / or 

pressurised zone around injector and normalized fault juxtaposition on effective stress change 

along the fault. The size of the cooled and/or pressurized zone around a fault does have an 

important impact on stress change as illustrated in figure 1-2. This can be explained via arching by 

adjacent non-cooled zones.  

The above workflow can determine a dimension-less proxy for seismic hazard for given 

operational conditions ΔT and ΔP. The method is cross-checked with existing tools 

(“benchmarked”). 
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Figure 12 Dimensionless effective stress change as a function of for the example if figure 1-1, where solid, 

dashed and dotted curves correspond to large, medium and small size of the cooled zone, respectively 

 

This report presents the methodology and modelling exercise to arrive at a tool which can 

distinguish between “low” and “elevated” fault reactivation risk for given operating conditions. A 

workflow for using the tool is included and the use and applicability is shown for two known 

geothermal cases for the Netherlands. 

 

At a later stage, this method could be used as a basis for Monte Carlo calculations to address 

uncertainties, which has been applied before in geothermal field cases in the 

Netherlands. The method can be improved upon and combined with learnings from studies into 

fault reactivation currently being run under the WarmingUp programme 

(https://www.warmingup.info/) and the KEM programme, e.g. KEM15 

(https://kemprogramma.nl/blog/view/5a3ab959-6f72-4e34-9ba7-9af80a7d8be0/kem-15-seismic-

risk-due-to-cooling-effects-in-geothermal-systems-started).  
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2 Theory & Methodology 

2.1 GENERAL APPROACH 

The effective stress changes (normalised to cooling or depletion) are defined as follows: 

∆𝜎′𝑖𝑗𝐷 =  
∆𝜎′𝑖𝑗

(∆𝑇 or ∆𝑝)
 

           (0) 

They can be expressed as a function of fault dip, dimensionless size of the cooled and / or pressurised 

zone around injector, and normalised fault juxtaposition (normalised with respect to reservoir layer 

thickness). Within a conservative approach, we apply a “worst case” fault dip of around 60 for all 

faults. This leaves us to study the impact of dimensionless size of the cooled and / or pressurised 

zone and normalised fault juxtaposition on effective stress change along the fault.  

We have developed dimensionless ‘type curves’ of stress changes (normalised to ∆𝑇 or ∆𝑝, see 

equation (0)) as a function of size of the cooled and / or pressurised zone and fault juxtaposition, 

using the methodology of van den Hoek and Poessé (2021). As a next step, this has been coupled to 

a typical (West-) Netherlands (initial) in-situ stress regime, i.e. vertical and horizontal stresses as a 

function of depth. The combination of initial in-situ stresses, dimensionless stress changes (including 

stress concentration and arching effects) and operational / reservoir parameters immediately yield 

a profile of Shear Capacity Utilisation (SCU) along faults for each project. From such a profile, 

qualitative criteria have been derived for low versus elevated risk of fault reactivation. Such a risk 

could be further elaborated by means of a Monte Carlo exercise in which the main uncertainties are 

addressed (this was outside the scope of this project). 

The SCU is defined as follows: 

𝑆𝐶𝑈 =  
𝜏

𝜏𝑚𝑎𝑥
=  

𝜎𝑛𝑡
′

𝐶 + 𝜎𝑛𝑛
′ tan(𝜑)

 

           (1) 

where 𝜎𝑛𝑡
′  and 𝜎𝑛𝑛

′  are the shear and normal (effective) stresses along the fault respectively, C is the 

fault cohesion and  the (static) friction angle. The criterion to avoid fault reactivation is given by 

𝑆𝐶𝑈 < 1 

           (2) 

For a fault with a dip angle  and cooling ΔT (= Treservoir−Tinjection, in C) the expression of the SCU (1) 

can be elaborated as follows: 

SCU = 
𝜎𝑛𝑡0

′ −𝐴𝑇∆𝑇.∆𝜎𝑛𝑡𝐷
′

𝐶+(𝜎𝑛𝑛0
′ +𝐴𝑇∆𝑇.∆𝜎𝑛𝑛𝐷

′ ).𝑡𝑎𝑛(𝜑)
 

𝜎𝑛𝑡0
′ =

1

2
(1 − 𝑘′)𝜎𝑣

′𝑠𝑖𝑛(2𝜗) 

𝜎𝑛𝑛0
′ =

1

2
(1 + 𝑘′)𝜎𝑣

′ +
1

2
(1 − 𝑘′)𝜎𝑣

′𝑐𝑜𝑠(2𝜗) 

           (3) 
where ∆𝜎𝑛𝑡𝐷

′  and ∆𝜎𝑛𝑛𝐷
′  are the dimensionless changes in shear stress and normal effective stress 

along the fault, respectively, 𝜎𝑛𝑡0
′  and 𝜎𝑛𝑛0

′  are the shear and normal (effective) initial stresses (in 
Pa) along the fault, respectively, and AT is the thermo-elastic constant in Pa/°C. The constant k’  
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in (3) is given by the ratio between initial minimum horizontal effective and vertical effective 
stresses (‘initial’ = before cooling and / or pressure change): 

𝑘′ =  
𝜎ℎ

′

𝜎𝑣
′  

           (4) 

Equations (1)-(4) can be combined to yield the following expression: 

|𝐴𝑇∆𝑇|

𝜎𝑣
′  . (∆𝜎𝑛𝑡𝐷

′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷
′ ) < 𝒇( 𝐶, 𝑘′, 𝜗, tan(𝜑)  ) 

           (5) 

where the function f is given by 

𝒇( 𝐶, 𝑘′, 𝜗, tan(𝜑)  ) =  
𝐶

𝜎𝑣
, +  [

1

2
(1 + 𝑘′) +

1

2
(1 − 𝑘′)𝑐𝑜𝑠(2𝜗)] 𝑡𝑎𝑛(𝜑) −

1

2
(1 − 𝑘′)𝑠𝑖𝑛(2𝜗) 

           (6) 

For a given (fixed) value of the friction angle , equations (5) and (6) enable separation of the generic 

dimensionless type curves for ∆𝜎𝑛𝑡𝐷
′  and ∆𝜎𝑛𝑛𝐷

′  from reservoir-specific parameters, such as cooling, 

depth (→ 𝜎𝑣
,
) and strength parameters.  

Equation (5) shows that an increase in SCU is directly related to an increase in the parameter ∆𝜎𝑛𝑡𝐷
′ +

𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷
′  which can be captured in generic type curves. The function f only depends on depth, 

dip angle and strength parameters and is therefore fully given by global (initial) reservoir parameters, 

i.e. not on cooling, pressure, position of thermal front etc. Cooling, pressure, position of the thermal 

front etc. are entirely captured by the type curves. 

The function f can be looked upon as an “upper limit” for thermal stress changes. For zero fault 

cohesion C, this function is illustrated in Figure 2-1. As can be seen, the lowest (most conservative) 

value is obtained for  = 60, in line with the fact that for a friction angle of 30 the (fault) plane of 

failure is equal to 60. This is the value for  that will be further used throughout this report. It can 

also be seen from figure 2-2 that f strongly decreases with decreasing k’ below 1. This is because 

k’=1 represents an isotropic stress state, and lower values imply larger differential stresses and 

therefore easier failure. We will come back to this later in the report. 

 

 

Figure 2-1 Function f versus dip angle  for k’ = 0.45 
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Figure 2-2 Function f versus k’ for dip angle  = 60 

2.2 TYPE CURVES FOR TEMPERATURE (COOLING) 

Type curves for ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  have been computed for a cold front approaching and crossing 

a permeable fault for a fixed value of tan() = 0.6. The type curves have been computed using the 

methodology of van den Hoek and Poessé (2021), in which effects of both vertical and horizontal 

thermal diffusion on the temperature front have been taken into account. 

2.2.1 Cold front approaching the fault  

Figure 2-3 and Figure 2-4 show the type curves for ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  as a function of 

dimensionless distance of the cold front from the fault, where the dimensionless distance is defined 

by: 

 

Dimensionless distance = 
Distance

Reservoir thickness
 

           (7) 

 

 

Figure 2-3 Illustration of type curves for ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a thermal front approaching the fault 
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Figure 2-4 Type curves for ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a thermal front approaching the fault as a function of 

dimensionless distance from the fault (minus signs to indicate approach from the left). Position 0 along the fault 

is defined as the centre between top of foot wall and bottom of hanging wall. 

As can be seen from this figure, the maximum value of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  strongly decreases with 

increasing distance for distances smaller than the layer thickness. This is also shown in Figure 2-5 

and Figure 2-6. 

 

Figure 2-5 Maximum value of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a thermal front approaching the fault as a function of 

dimensionless distance from the fault (minus signs to indicate approach from the left). 
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Figure 2-6 Maximum value of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a thermal front approaching the fault as a function of 

dimensionless distance from the fault (logarithmic scale). 

2.2.2 Cold front crossing a permeable fault  

Details of a thermal front crossing a tilted permeable fault with offset are complicated and require 

a full reservoir simulation. Looking at figure 2-3, the thermal front shape (following behind the fluid 

flow) is expected to become tilted with its bottom more advanced because of the higher horizontal 

flow rate near the bottom. After crossing the fault, the bottom of the front is expected to ‘drop’ to 

the bottom of the hanging wall layer under the influence of gravity (depending on the ratio of vertical 

permeability over horizontal permeability and density difference between cold and hot water). 

The main impact of cold front position upon possible stress concentrations along the fault will be at 

the sharp angles at the bottom of the top (foot wall) layer and the top of the bottom (hanging wall) 

layer. In order to keep calculations tractable and remain conservative, it is assumed that the thermal 

front crosses the fault with a tilted shape that is parallel to the fault. In such a way, the cold front 

hits the entire (exposed part of the) fault at once at a moment in time that no vertical smearing of 

temperature by thermal diffusion has taken place yet, and therefore the impact of stress 

concentrations is maximum (van den Hoek and Poessé, 2021). Hitting the entire (exposed part of the) 

fault at once will have a stronger impact than gradually hitting parts of the fault over time. As a 

quality check, it was also found that the difference in computed stress concentrations between 

vertical and tilted thermal fronts is negligible for thermal front penetrations (into the layer on the 

other side of the fault) equal to the layer thickness or more. 

Figure 2-7 to 2-12 illustrate the type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  as a function of dimensionless 

time tD since crossing a permeable fault with dimensionless offset 0.25. Here, the dimensionless time 

tD is defined as: 

𝑡D = 
𝑡

ℎ2
 

           (8) 

where  is the thermal diffusivity, t is the time since crossing the fault, and h is the reservoir 

thickness. The dimensionless offset is defined by 

Dimensionless offset = 
Offset

Reservoir thickness
 

           (9) 
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The offset is defined such that a positive offset corresponds to a “normal” fault geometry (hanging 

wall below the foot wall, see Figure 2-7), whereas a negative offset corresponds to “reverse” fault 

geometry (hanging wall above the foot wall).  

 

Figure 2-7 Type curve of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for the moment that the cold front touches the fault (tD = 0). This 

corresponds to the black curve (distance = 0) in Figure 2-4. Position 0 is defined as the centre between top of foot 

wall and bottom of hanging wall (same as in Fig. 2.4). 

Finally, all results shown in this paragraph have been computed for a (conservative) dimensionless 

injection rate QD = 500, where QD is defined by 

 

𝑄D = 
𝑄

2𝜋ℎ𝜂
 
𝐶𝑤

𝐶
 

                 (10) 

with Q the injection rate, Cw and C the specific heats of water and fluid-filled formation, 

respectively, and h and  as defined above. For “typical” values of Cw (4MJ/m3K), C (2.5 MJ/m3K) 

and  (10-6 m2/s) (Koning, 1988, van den Hoek and Poessé, 2021) a QD of 500 corresponds to a Q of 

350 m3/hr for h = 50 m and 1400 m3/hr for h = 200 m. These are very high rates for a geothermal 

well, and therefore a QD of 500 can be considered as high (i.e. conservative). 

 

Under the assumption that the thermal front crosses the fault with a tilted shape that is parallel to 

the fault, the cold front just “touches” the fault at tD = 0 (Figure 2-7). The reservoir section to the 

left of the fault has been entirely cooled, whereas the reservoir section to the right is still “hot” 

(uncooled). Moreover, at this moment in time thermal diffusion along the fault from cap- and 

baserock is still very small. Therefore, the type curve for ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  in this case is 

characteristic for the stress concentrations on the tilted edge of one layer, and this is indeed what 

is seen in Figure 2-7. 
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Figure 2-8 Type curve of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  ‘shortly’ after the moment that the cold front touches the fault 

(tD = 4.10-6). For a reservoir of 200 m thick, this corresponds to 1.5 days. Type curve for tD = 0 (black line) is also 

shown in this figure. 

Shortly after the cold front has crossed the fault, a small area to the right off the fault is cooled, 

resulting in a second stress concentration peak above the first one, see Figure 2-8. With increasing 

time after crossing the fault, the size of the cooled zone to the right of the fault increases as well, 

and with that the stress concentrations in ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  increase (Figure 2-9 to Figure 2-12). 

In addition, thermal diffusion into cap- and baserock results in a widening of the stress concentration 

“mountain” as is visible. 

 

Figure 2-9 Type curve of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  some time after the moment that the cold front touches the fault 

(tD = 4.10-5). For a reservoir of 200 m thick, this corresponds to 15 days. Type curves for tD = 0 (black line) and 

tD= 4.10-6 (blue line) are also shown in this figure. 
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Figure 2-10 Type curve of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  some time after the moment that the cold front touches the fault 

(tD = 0.004). For a reservoir of 200 m thick, this corresponds to 4 years. Type curves for tD = 0 (black line), tD= 

4.10-6 (blue line), tD= 4.10-5 (orange line), and tD= 4.10-4 (grey line) are also shown in this figure. 

 

Figure 2-11 Type curve of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  a long time after the moment that the cold front touches the 

fault (tD = 0.04). For a reservoir of 200 m thick, this corresponds to 40 years. Type curves for tD = 0 (black line), 

tD= 4.10-6 (blue line), tD= 4.10-5 (orange line), tD= 4.10-4 (grey line) and tD = 0.04 (yellow line) are also shown in 

this figure. 

 

Figure 2-12 Type curve of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  a very long time after the moment that the cold front touches 

the fault (tD = 0.4). For a reservoir of 200 m thick, this corresponds to 400 years, but for a 50 m thick reservoir, 

this corresponds to (only) 25 years. Type curves for tD = 0 (black line), tD= 4.10-6 (blue line), tD= 4.10-5 (orange 

line), tD= 4.10-4 (grey line), tD = 0.04 (yellow line) and tD = 0.4 (dark blue line) are also shown in this figure. 
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In summary, when a cold front crosses a fault, the resulting stress concentrations along the fault will 

be initially characterized by sharp peaks which over time broaden as a result of further flooding of 

the reservoir on the other side of the fault and of thermal diffusion within the cap- and baserock.  

 

Figure 2-13 Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless times tD after crossing the fault, 

and for dimensionless offset 0.25. 

For a conservative approach, the highest value of SCU is taken along the fault and as a function of 

time after “touching” the fault by the cold water front. As can be seen from Figure 2-13, this is 

around tD = 0.0041 with a corresponding highest value of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  = 0.95. 

Appendix A shows a complete overview of the type curves ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for all dimensionless 

offsets. Below, a selection of those is discussed for further physical understanding. 

Figure 2-14 shows the same results as Figure 2-13, but now for dimensionless offset 0.9. As can be 

seen, the highest values of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′   (at tD = 0.00041 − 0.0041) are significantly higher 

than for offset 0.25. The reason is that the stress changes resulting from cooling on both sides of the 

fault are concentrated in a much smaller (fault-overlapping) area. Also, the stress concentrations 

remain high long-term with increasing thermal diffusion into cap- and baserock because the cooled 

areas below the foot wall (baserock) and above the hanging wall (caprock) contribute to the stress 

concentrations. The highest stress concentrations as a function of offset are reached for 

dimensionless offset = 1 (Figure 2-15), and this drops rapidly for offsets above 1 (Figure 2-16). 
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Figure 2-14 Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless times tD after crossing the fault, 

and for dimensionless offset 0.9. 

 

Figure 2-15 Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless times tD after crossing the fault, 

and for dimensionless offset 1.0. 

 

Figure 2-16 Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless times tD after crossing the fault, 

and for dimensionless offset 1.1. 
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Figure 2-17 Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless times tD after crossing the fault, 

and for dimensionless offset −0.25. 

 

Figure 2-18 Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless times tD after crossing the fault, 

and for dimensionless offset −1.0. 

 

Figure 2-19 Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless times tD after crossing the fault, 

and for dimensionless offset −1.5. 

Figure 2-17 to Figure 2-19 display the type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for negative offsets 

(“reverse” fault geometry). As can be seen from these figures, the type curves exhibit a 

fundamentally different behaviour than the type curves for positive offsets (“normal” fault 
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geometry). In fact, for all cases the highest stress concentration is reached right at the start, i.e. at 

the moment the cold front “touches” the fault.  

 

Figure 2-20 Explanation for the fundamentally different characteristics of stress concentrations along the fault 

between “normal fault” geometries (left) and “reverse fault” geometries (right). 

An explanation for the difference between “normal fault” geometry (with two nearby high stress 

concentrations) and “reverse fault” geometry (with two high stress concentrations that are far apart) 

is offered in Figure 2-20. This figure indicates areas with more elastic deformation and less elastic 

deformation following reservoir cooling. Generally speaking, in response to increasing vertical 

effective stress, a cooling reservoir will tend to exhibit more elastic strain in areas that form a sharp 

angle with respect to adjacent (non-cooling) formations than in areas that form a dead angle. This 

makes intuitively sense and is also confirmed by finite element calculations. As a result of these 

different strain tendencies, the highest shear stresses along the fault are expected to build up 

adjacent to reservoir areas with the highest deformation tendencies. For the “normal faulting” 

geometries, this is at the bottom of the top reservoir and the top of the bottom reservoir, whereas 

for the “reverse faulting” geometries, this is at the top of the top reservoir and the bottom of the 

bottom reservoir. 

Finally, from all the type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  as a function of position along the fault 

and of dimensionless time tD, we take the most conservative value for each fault offset. For example, 

for a dimensionless offset of 0.25, we arrived at a value of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  = 0.95 

corresponding to the maximum value at time tD = 0.0041 (see discussion below Figure 2-13). In a 

similar way, “conservative maximum” values can be obtained for the other offsets.  

The result of this exercise is shown in Figure 2-21. This figure clearly displays the general features 

that were discussed above. For example, the highest value is seen for offset +1, whilst for negative 

offset, the ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′ is independent of offset, because it reflects the highest stress 

concentration at tD = 0. 
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Figure 2-21 Maximum value of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for cooling as a function of dimensionless fault offset. 

2.3 TYPE CURVES FOR PRESSURE (PRESSURE INCREASE AROUND INJECTOR) 

Type curves for ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  have been computed for a a fault at different distances from 

the injection well. The type curves have been computed using the methodology of van den Hoek and 

Poessé (2021).  

In this case, equation (5) for fault reactivation changes to 

|𝐴𝑝∆𝑝|

𝜎𝑣
′  . (∆𝜎𝑛𝑡𝐷

′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷
′ )  < 𝒇( 𝐶, 𝑘′, 𝜗, tan(𝜑)  ) 

          (10) 

where Ap is the poro-elastic constant and p the pressure increase in the injector. 

The pressure profile around the injector is assumed to have a logarithmic form (Re = drainage radius), 

∆𝑝(𝑟)  𝑙𝑛 (
𝑅𝑒

𝑟
) 

          (11) 

whilst the entire reservoir interval is assumed to be perforated. 

For a fault at a certain distance from the injector, eq. (11) can be combined with the methodology 

of van den Hoek and Poessé (2021) to compute dimensionless stress changes along the fault. In the 

figures below (and in Appendix B), the computed quantity ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  along the fault is 

shown for different dimensionless offsets as a function of dimensionless distance, where in this case 

dimensionless distance is defined as 

Dimensionless distance =  
Distance injector−fault

Drainage radius
 

         (12) 

Figure 2-22 shows the dimensionless stress change ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  along the fault for a number 

of dimensionless distances d/Re between injector and fault, and fault offset +0.9. As can be seen 

from this figure, the dimensionless stress changes are only appreciable for small distances between 

injector and fault. For example, for a drainage radius Re = 1000 m, the figure shows that for well-

fault distances exceeding about 100 m, the pressure contribution is already fairly small.  
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Figure 2-22 Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless distances d/Re between injector and 

fault, and for dimensionless offset +0.9. For comparison, also the case of uniform pressure increase equal to the 

injector pressure increase is given (black curve). 

Another feature of Figure 2-22 is that qualitatively it is a “mirror image” (in the horizontal axis) of 

the type curves of 𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for the temperature (compare, for example, with Figure 

2-14). This can be explained by the fact that cooling tends to increase effective stress at the fault, 

whereas pressure increase tends to decrease it. As a result of the geometrical concentration of stress 

change in the area where the juxtaposed layers overlap, it can be seen that in this case the decrease 

in (compressive) effective stress is most in this area. 

Finally, the (black) uniform pressure curve of 𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  is less uniform along the fault 

than the other curves. This can be explained by the fact that for uniform pressure (loading), the 

total (not effective) poroelastic stress change will be larger because a significantly larger area (i.e. 

the entire reservoir) is loaded by the pressure increase. On the other hand, for near-wellbore 

pressure increase the total poroelastic stress change will be limited, and the main contribution to 

the effective stress change will be the local pressure increase, see Figure 2-23 for an illustration. 

 

Figure 2-23 Type curves of dimensionless changes in total and effective compressive stress, in shear stress, and in 

pressure for dimensionless distance d/Re = 0.0001 between injector and fault, and for dimensionless offset +0.9. 

Just like in the case of cooling, from all the type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  as a function of 

position along the fault and of dimensionless distance between injector and fault, we take the most 

conservative value for each fault offset. For example, for a dimensionless offset of 0.9 and 
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dimensionless distance d/Re = 0.1, we arrive at a “conservative maximum” value of ∆𝜎𝑛𝑡𝐷
′ +

𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷
′  = 0.19 (see Figure 2-22).  In a similar way, “conservative maximum” values can be 

obtained for the other offsets.  

The result of this exercise is shown in Figure 2-24 and Figure 2-25. In this case, the highest value of 

∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  takes place for dimensionless fault offset −1 (instead of +1) because of the 

“mirror image” effect as discussed above. This also demonstrates that the pressure contribution to 

∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  declines rapidly with increasing distance between injector and fault, in line 

with expectations. 

 

Figure 2-24 Maximum value of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for pressure increase as a function of dimensionless fault 

offset for different values of dimensionless distance d/Re between injector and fault. 

 

Figure 2-25 Maximum value of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for pressure increase as a function of dimensionless distance 

d/Re between injector and fault, for different values of fault offset. 
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2.4 COMBINATION OF TYPE CURVES FOR TEMPERATURE (COOLING) AND PRESSURE (PRESSURE 

INCREASE AROUND INJECTOR) 

For the general case of both cooling and pressure increase, the criterion SCU < 1 corresponds to 

|𝐴𝑇∆𝑇|

𝜎𝑣
′  . (∆𝜎𝑛𝑡𝐷−𝑇

′ + tan(𝜑) . ∆𝜎𝑛𝑛𝐷−𝑇
′ ) +

|𝐴𝑝∆𝑝|

𝜎𝑣
′  . (∆𝜎𝑛𝑡𝐷−𝑝

′ + tan(𝜑) . ∆𝜎𝑛𝑛𝐷−𝑝
′ )  

< 𝒇(𝐶,  𝑘′, 𝜗, tan(𝜑)  ) 

          (13) 

Our approach is that we take a combination of conservative values for the temperature and pressure 

contributions to (13), as based on the type curves of Figure 2-7/2-6 (cooling, in case the cold front 

does not intersect a fault), Figure 2-21 (cooling, in case the cold front intersects a fault), and Figure 

2-24/Figure 2-25 (pressure). Therefore, both the cooling and the pressure terms will be positive, and 

there will be no “compensation” effect of one by the other. 

For example, for a case where the cold front crosses a fault with a dimensionless offset of 0.5 which 

is located at 0.1*Re from the injector, 2-5/2-6, Figure 2-21 and Figure 2-24/Figure 2-25 can be read 

off to arrive at the following equation: 

|𝐴𝑇∆𝑇|

𝜎𝑣
′  * 1.02 +

|𝐴𝑝∆𝑝|

𝜎𝑣
′  * 0.25 < 𝒇(𝐶,  𝑘′, 𝜗, tan(𝜑)  ) 

          (14) 

in which all parameters can be directly derived from depth, regional stress regime, cooling, 

pressure increase at the injector, and material strength parameters. 



 

Page | 23 

 

3 Description and use of the 

tool 

3.1 DESCRIPTION 

The results as presented in chapter 2 and Appendices A and B have been incorporated into a 

spreadsheet tool that computes its results by interpolating between dimensionless type curves as 

presented in chapter 2. As explained in 2.1, this is an easy exercise because the type curves 

contain no information about specific reservoirs other than dimensionless offset, dimensionless 

distance of the cold front from the fault, and dimensionless distance of the injector well from the 

fault. 

3.2 LIST OF ‘CONSERVATIVE’ ASSUMPTIONS AND VALUES 

1. Fault tilt angle = 60. 

2. Thermal front hits the fault ‘at once’ → maximum stress concentration effect. 

3. High dimensionless injection rate QD = 500 → maximum impact of cooling. 

4. From the entire profile of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  along the fault, use the maximum value 

(applies for both temperature and pressure). 

5. From maximum values of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  as a function of field life, use the 

maximum value (applies for both temperature and pressure). 

6. In adding up the impact of cooling and pressure on stress concentrations along the fault, 

add up maximum values in order to prevent (partial) ‘compensation’ of one by the other. 

7. Fault is fully permeable → cooling on the ‘other side’ of the fault also contributes to 

stress concentrations along the fault. 

8. Fault cohesion C = 0. 

9. Friction angle  of fault: tan() = 0.6. 

10. k' as defined by equation (4) is for West Netherlands conditions → maximum deviatoric 

stress. 

11. Drainage radius Re = 1000 m → maximum pressure effect on stress changes along fault 

12. (Depth: top of reservoir → lowest 𝜎𝑣
′ in equation (13))  

3.3 LIST OF OTHER VALUES OF ‘FIXED’ PARAMETERS  

1. Total overburden gradient = 0.22 bar/m 

2. Pore pressure gradient = 0.104 bar/m 

3. Poro-elastic constant Ap = 0.7 

REMARK: the theoretical formula for Ap is given by 𝐴𝑝 =  (1 − 𝛽)
1−2𝜈

1−𝜈
. However, lab tests 

and also field calibrations have shown that this formula is a ‘rough approximation’ at best. 

Therefore, it is proposed to use (a) field-calibrated value(s). 

4. Thermo-elastic constant AT = 1 bar/C 

REMARK: the theoretical formula for AT is given by 𝐴𝑇 =  
𝛼𝐸

1−𝜈
. However, lab tests and also 

field calibrations have shown that this formula is a ‘rough approximation’ at best. 

Therefore, it is proposed to use (a) field-calibrated value(s). 
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3.4 INPUT 

Table 3-1 Variable input for the tool 

Depth (m) 2000 

Reservoir thickness (m) 200 

Offset fault (m) (positive for "normal" fault, 

negative for "reverse" fault) 
50 

 

(Reservoir T minus injection T) (C) 40 

(Injector BOP - Reservoir pressure) (bar) 10 

 

Distance injector - fault (m) 500 

Closest distance cold front - fault (m) 0 

 

This table has a very limited input, thus allowing no “tweaking” of parameters to obtain a 

favorable outcome. 

The result is computed by evaluating equation (13) in combination with interpolation between the 

results of Figure 2-7/2-6, Figure 2-21 and Figure 2-24/Figure 2-25. Also, from the interpolated 

result plus the reservoir-specific parameters, an appropriate value of conservative upper limit of 

the SCU is computed. 

3.5 OUTPUT 

 

Figure 3-1 Input screen of the tool showing default input 

The output appears right below the input. Based on the computed SCU, a “green area” (0  SCU < 

0.995), and a “red area” (SCU  0.995) are defined. The boundary between “green” and “red” has 

been somewhat arbitrarily chosen at 0.995 and can be changed easily in the future. 

In addition, the relative contributions of cooling and pressure increase are indicated. As discussed 

in chapter 2, the relative contribution from pressure is generally expected to be minor. 

Depth (m) 2000

Reservoir thickness (m) 100

Offset fault (m) (positive for "normal" fault, 

negative for "reverse" fault)
25

(Reservoir T minus injection T) (C) 40

(Injector FBHP - Reservoir pressure) (bar) 10

Distance injector - fault (m) 500

Closest distance cold front - fault (m) 0

Result of screening calculations

There is LOW risk of fault reactivation

SCU (conservative upper limit) 0.972

Temperature contribution 99%

Pressure contribution 1%
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3.6 FIXED VALUES 

Fixed values within the tool are indicated in the table below. These values can be changed based 

on the outcome of future discussions between experts. 

Table 3-2 Fixed values within the tool 

C (bar) 0 Cohesion of fault 

tan() 0.6  = friction angle of fault 

Effective overburden gradient (bar/m) 0.116 
Overburden gradient minus pore 

pressure gradient 

k' 
computed 

internally 

Defined by equation (4). This ratio 

increases with depth (Verweij et al., 

2012) 

() 60 Inclination of fault 

Ap 0.7 Poro-elastic constant 

 (bar/°C) 1 Thermo-elastic constant 

Drainage radius (m) 1000 
Half of distance between injector 

and producer 

 

As it turns out, results are very sensitive to the ratio k’ between effective minimum horizontal 

stress and effective vertical stress. Generally, this ratio increases with increasing depth. Currently, 

a trend curve based on data from the West Netherlands basin (Verweij, Simmelink, Underschultz, & 

Witmans, 2012) has been incorporated. This trend curve is based on the following equation for 

total minimum horizontal stress. 

𝜎ℎ (MPa) = [
Depth (m)

68.223
]

(
1

0.9675
)
 

          (15) 

Using an overburden gradient of 0.22 bar/m and a pore pressure gradient of 0.104 bar/m, equation 

(15) immediately yields a value of k’ as a function of depth.  

If new data would be available that warrants a change in any of the above parameters this can be 

changed directly in the tool without impacting the results from the type curve study. 

3.7 VALIDATION OF THE TOOL 

Goodier (1937) developed an analytical solution for the stress change in an arbitrary point in the 

subsurface as a result of pressure depletion in a rectangular reservoir in a two-dimensional infinite 

medium. Nowacki (1986) derived a similar analytical solution for a rectangular depleting reservoir 

in an elastic X f-space (Figure 3-2a). The main difference between these two solutions is the 

presence of a stress-free surface. For sX low reservoirs, say up to 1000 m depth, the nearby stress-

free surface does impact the calculated stress change and Nowacki’s solution is preferred. For 

deeper reservoirs, as in most geothermal projects in the Netherlands, the stress-free surface is 

sufficiently far away and Goodier’s solution is sufficiently accurate. 

 

The stress change in the subsurface of a trapezoid reservoir is required to calculate the stress 

distribution along a dipping fault plane at the right-hand side of a depleting reservoir ((Figure 

3-2b). For vertical faults with a dip angle of 90 degrees, Goodier’s (1937) or Nowacki’s (1986) 

solution can be used to calculated the stress change along a vertical line at the right-hand side of 

the rectangular depleting reservoir. However, the accuracy of the solution deteriorates with 
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reducing dip angle. For this reason, Lehner (2019, (Figure 3-2b) derived an analytical solution for a 

trapezoid reservoir in an infinite plane-strain medium (similar to Goodier). 

 

Figure 3-2 a) Nowacki’s (1986) rectangular plane-strain reservoir with stress-free surface, and b) Lehner’s (2019) 

trapezoid plane-strain reservoir without stress-free surface (at arbitrary depth). 

Van den Bogert (2019) used Lehner’s solution to validate Finite-Element results and develop a fast 

analytical approach to fault rupturing in depleting reservoirs. In this Appendix the analytical 

solution used in this study is compared to both the analytical solution by Lehner and the finite-

element results by van den Bogert (2019). 

 

  

90°

80°

70°

60°
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Figure 3-3 Foot wall reservoir bounded by a fault dipping under 90, 80, 70 and 60 degrees respectively (Van den 

Bogert, 2019). 

 

Figure 3-4 a) Incremental effective normal stress, and b) the incremental shear due to 1 MPa reservoir depletion 

along fault planes dipping under 90, 80, 70 and 60 degrees (Van den Bogert, 2019). The analytical solution used 

in this study for 60 and 80 degree dip angle is represented by the black and blue solid lines respectively 

(labelled “60º vdHoek” and “80º vdHoek”). 

Figure 3-3 shows a foot wall reservoir bounded by a fault (purple line) dipping under 90, 80, 70 and 

60 degrees respectively, while Figure 3-4 shows the change in normal effective stress along the 

fault plane due to a reduction of the reservoir pressure of 1 MPa. It is seen that the analytical 

solution used in this study corresponds exactly with the Lehner’s (2019) analytical solution and the 

DIANA finite-element results as reported by Van den Bogert (2019). 

  

Figure 3-5 a) Fault plane dipping under 70 degrees offsetting an infinite 100 m thick reservoir by 50 m, and b) 

the change of normal effective stress and shear stress along the fault plane due to a reservoir depletion of 1 

MPa (Van den Bogert, 2019). 

Figure 3-5 shows the change of effective normal stress and shear stress along a fault dipping under 

70 degrees that offsets a horizontally infinite reservoir of 100 m thick by 50 m (normalised 

reservoir offset 0.5). The results are given for the analytical solutions used in this study and by 

Lehner (2019), which are identical to the DIANA finite-element results as reported by Van den 

Bogert (2019). It is concluded that results from the analytical solution used in this study are 

identical to those obtained by other authors using analytical and finite-element approaches. 
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4 Field validation 

4.1 FIELD EXAMPLES 

Three actively operating geothermal projects are used to compare and validate the use of the tool. 

The cases reflect the majority of the subsurface projects in the Netherlands. The presented cases 

are a project in Noord-Holland, Centraal Nederland and Zuid-Holland. For each of the projects, a 

project-specific analysis is available. The results from this analysis are compared with the 

simplified approach provided by the newly developed screening tool. The tool is currently designed 

to be more conservative than a location-specific analysis as the field examples show. 

 

The project in Zuid-Holland makes use of the Jurassic Delft/Alblasserdam Sandstone reservoir 

which is the main target in the West of the Netherlands. It is located in the West-Netherlands Basin 

which is considered the most conservative setting of the stress regime (see section 3.5). The 

project in Centraal Nederland on the other hand sources from the Slochteren reservoir, being the 

main target in the Northern part of the Netherlands. The area is also slightly overpressured and it 

exhibits larger temperature differences than the project in Zuid-Holland. The project in Noord-

Holland also sources the Slochteren reservoir but is in its depth and temperature differential are 

one of the highest currently in operation.  

4.2 PROJECT ZUID-HOLLAND 

A project-specific hazard analysis was available. Injector and producer are clearly on different 

sides of a fault zone. The fault area is expected to cool down and the geomechanical state and 

fault reactivation potential under operating conditions was assessed. The results of the SHA were 

positive with an SCU value in the order of 0.7. Assessing the case with the screening tool the 

resulting SCU is higher due to the conservative nature of the tool. This is mainly caused by the 

following items: 

 

• The k’ for the West-Netherlands Basin is taken more conservatively in the tool. Local FIT 

and LOT tests can allow for a more deterministic approach in terms of the k’ as was used 

for the location-specific case of X. 

• In the project-specific analysis, temperature diffusion is addressed fully in 2D space, 

resulting in less stress concentration along fault planes, providing again a more 

deterministic view. The prepared tool does not compensate for horizontal diffusion at 

offset along a fault plane nor does it contain a depth-dependent thermal gradient. It is 

likely including these factors may provide a less conservative estimate of the situation. It 

is likely including these factors may provide a less conservative estimate of the situation. 

Whether this difference is of significance must be assessed in a more site-specific analysis. 

The lack of these physics in the tool result in a more conservative estimate of the 

situation as is the purpose of this SHS key-element.  
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Figure 4-1 The tool applied to the Zuid-Holland case 

4.3 PROJECT CENTRAAL NEDERLAND 

For this project, the project-specific analysis  assumed the stress differentials caused by 

temperature and pressure change affect the fault directly. The risk was assessed as low, no SCU 

value was provided. In practice, the fault is not expected to be affected (“Closest distance cold 

front – fault” > 0), which would only further lower the risk. The result from the screening tool 

reaches SCU value 1.0 however. This can mostly be attributed to the larger temperature 

differential and the assumption that the cold front is crossing the fault at 800m distance. Under 

the conservative conditions the tool determines the risk to be elevated, warranting a location-

specific analysis, which would prove the risk is lower than the tool indicates. 

 

 

Figure 4-2 The tool applied to the Centraal Nederland case 
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Other differences between the tool and the project-specific analysis are as follows: 

 

• The value used for k’ was taken much more conservatively than known for the 

Netherlands. The PSNS database (TNO, 2015) suggests a k’ in the order of 0.50 for the 

region, based on local FIT and LOT tests. This is partially caused by the slightly 

overpressured reservoir (by about 10 bar) but mostly caused by an over-conservative 

estimate of the stress gradient. It should be noted that overpressure can be corrected for 

by applying it as excess “Injector FBHP - reservoir pressure” in the tool. 

• The analysis previously performed did not include stress concentration along the fault 

plane due to the offset at a fault. Assuming the offset of ‘1’ at the fault plane the new 

tool projects a more conservative scenario.  

4.4 PROJECT NOORD-HOLLAND 

The project-specific analysis concluded a low risk for fault reactivation with an SCU value of 

around 0.75. For this, a small fault was analysed close to the injector. The large temperature 

differential causes the results screening tool to be higher than in the project-specific analysis, 

resulting in an elevated potential of fault reactivation. The tool allows a higher temperature 

differential for the reservoir conditions, especially the higher depth. The temperature differential 

where this case does not exceed SCU > 1.0 is 54°C. Note that this is already significantly higher 

than the temperature differential in the Centraal Nederland case as the higher depth and thickness 

allows for a higher temperature differential.   

 

 

Figure 4-3 The tool applied to the Noord-Holland case 

4.5 REMARKS 

The above cases highlight the importance of a location-specific analysis if a risk is deemed high 

enough to have cause of concern. Later analysis can make use of the specific conditions in depth 

and include probabilistic methods to address the uncertainty of these conditions. Especially higher 

temperature differentials can prove to have higher potential of fault reactivation and would sooner 

warrant a more detailed analysis. The impact of a differing temperature differential is captured in 

the screening tool. 
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5 Conclusion 
 

The results of this study were used to compile type curves for fault reactivation under operating 

conditions ΔT and ΔP. The type curves are integrated in the accompanied tool and discern projects 

which have a low potential of fault reactivation versus an elevated potential of fault reactivation. 

The input for the type curves is deliberately conservative in terms of fault properties and stress 

field. The case studies highlight the importance of a location-specific analysis if the potential of 

fault reactivation is deemed high enough to have cause of concern. In the case of an elevated 

potential, it is suggested to be followed up by a site-specific analysis including parameters, 

uncertainties and a Monte Carlo simulation. This can be part of the future locationpecific 

evaluation. The input for the type curves is deliberately conservative in terms of fault properties 

and stress field. If new data would be available that warrants a change in any of the above 

parameters this can be changed directly in the tool without impacting the results from the type 

curve study. 
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Appendix A Type curves for 

dimensionless stress change 

by temperature 
 

 

 

Fig. A1. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless times tD after crossing the fault, and 

for dimensionless offset −1.5. 

 

Fig. A2. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless times tD after crossing the fault, and 

for dimensionless offset −1.0. 
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Fig. A3. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless times tD after crossing the fault, and 

for dimensionless offset −0.9. 

 

Fig. A4. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless times tD after crossing the fault, and 

for dimensionless offset −0.5. 

 

Fig. A5. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless times tD after crossing the fault, and 

for dimensionless offset −0.25. 
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Fig. A6. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless times tD after crossing the fault, and 

for dimensionless offset +0.25. 

 

Fig. A7. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless times tD after crossing the fault, and 

for dimensionless offset +0.5. 

 

Fig. A8. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless times tD after crossing the fault, and 

for dimensionless offset +0.9. 
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Fig. A9. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless times tD after crossing the fault, and 

for dimensionless offset +1.0. 

 

Fig. A10. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless times tD after crossing the fault, and 

for dimensionless offset +1.1. 

 

Fig. A11. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless times tD after crossing the fault, and 

for dimensionless offset +1.5. 
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Appendix B Type curves for 

dimensionless stress change 

by pressure 
 

 

Fig. B1. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless distances d/Re between injector and 

fault, and for dimensionless offset −1.5. For comparison, also the case of uniform pressure increase equal to the 

injector pressure increase is given (black curve). 

 

 

Fig. B2. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless distances d/Re between injector and 

fault, and for dimensionless offset −1.1. For comparison, also the case of uniform pressure increase equal to the 

injector pessure increase is given (black curve). 
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Fig. B3. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless distances d/Re between injector and 

fault, and for dimensionless offset −1.0. For comparison, also the case of uniform pressure increase equal to the 

injector pressure increase is given (black curve). 

 

 

Fig. B4. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless distances d/Re between injector and 

fault, and for dimensionless offset −0.9. For comparison, also the case of uniform pressure increase equal to the 

injector pressure increase is given (black curve). 

 

Fig. B5. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless distances d/Re between injector and 

fault, and for dimensionless offset −0.5. For comparison, also the case of uniform pressure increase equal to the 

injector pressure increase is given (black curve). 
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Fig. B6. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless distances d/Re between injector and 

fault, and for dimensionless offset −0.25. For comparison, also the case of uniform pressure increase equal to the 

injector pressure increase is given (black curve). 

 

Fig. B7. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless distances d/Re between injector and 

fault, and for dimensionless offset +0.25. For comparison, also the case of uniform pressure increase equal to the 

injector pressure increase is given (black curve). 

 

Fig. B8. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless distances d/Re between injector and 

fault, and for dimensionless offset +0.5. For comparison, also the case of uniform pressure increase equal to the 

injector pressure increase is given (black curve). 



 

Page | 40 

 

 

Fig. B9. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless distances d/Re between injector and 

fault, and for dimensionless offset +0.9. For comparison, also the case of uniform pressure increase equal to the 

injector pessure increase is given (black curve). 

 

Fig. B10. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless distances d/Re between injector and 

fault, and for dimensionless offset +1.0. For comparison, also the case of uniform pressure increase equal to the 

injector pressure increase is given (black curve). 

 

Fig. B11. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless distances d/Re between injector and 

fault, and for dimensionless offset +1.1. For comparison, also the case of uniform pressure increase equal to the 

injector pressure increase is given (black curve). 
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Fig. B12. Type curves of ∆𝜎𝑛𝑡𝐷
′ + 𝑡𝑎𝑛(𝜑) . ∆𝜎𝑛𝑛𝐷

′  for a range of dimensionless distances d/Re between injector and 

fault, and for dimensionless offset +1.5. For comparison, also the case of uniform pressure increase equal to the 

injector pressure increase is given (black curve). 

 

 


