Workshop Rifting systems and its significance for hydrocarbon exploration in the Netherlands, Utrecht, June 5th 2008 Impact of rifting on fluid migration in the Netherlands

Hanneke Verweij

Contents

- Approach
- Rifting & permeability framework
- Permeability framework, pressure distribution & fluid migration
- Case study examples
 - Terschelling Basin & Dutch Central Graben
 - Broad Fourteens Basin
 - West Netherlands Basin
 - Ruhr Valley Graben
- Conclusions

Approach

- Petroleumhydrogeological approach
- Focus on present-day characteristics and indicators of fluid migration on regional scale
- Based on selected results of different projects, such as:
 - JIP TNO-CSIRO Pressure and hydrodynamic study Southern North Sea Basin (2002-2004)
 - TNO detailed mapping programme Netherlands offshore
 - TNO Thematic mapping programme NL offshore & onshore

Rifting and resulting present-day permeability framework

Pre-rift units: Syn-rift units:

faulted & regionally extensive regionally restricted S: by deep reaching faults N: by salt structures Post-rift units: regionally extensive

Regional characterization pressure and fluid migration systems

- A. Normally pressured
- B. Intermediate overpressured
- C. Significantly overpressured

Fluid pressures in Germanic Trias groups

Regional characterization pressure systems Cretaceous and Upper Jurassic units

6

General causes of regional pressure distribution

- <u>Processes</u> affecting pressures (and fluid flow) (processes generating pressures, e.g. burial and sedimentation; processes dissipating pressures, e.g. lateral and vertical dewatering*)
- Hydraulic characteristics

(permeability, storage coefficient/compressibility - lithology - faults and fractures; for multiphase flow also Pc)

*Note: flowing water distributes pressures (increasing or decreasing pressures depending on location in flow system)

Main regional differences in factors influencing pressure generation and pressure retention/dissipation

Important factor influencing present-day pressure distribution: recent sedimentary loading

Northward increasing thickness Upper North Sea Group

- Northward increasing Pliocene
 & Quaternary sedimentary loading
- (Northward increasing overpressures due to recent sedimentary loading)

Factor influencing pressure retention/dissipation: Facies

Southward changes of facies to more porous and permeable lithologies

Pressure characteristics northern offshore

11

Permeability framework and Overpressures Jurassic-Triassic pressure compartments

Hydraulic head in Upper Jurassic sandstones

(hydraulic head: $H_w = P_w / \rho_w g - z$)

Regional lateral dewatering towards inverted basin centre DCG

Including local dewatering along salt structures

Pressure retention in Terschelling Basin

Overpressure distribution and fluid flow in Schieland/Scruff groups F3 block

Northeastern part block F3

1073 Reference density (kg/m3)

salt structure

Leakage along salt-related faults in northern part block F3

Hydraulic head Lower Triassic sandstones (southern offshore)

Regional southward decreasing heads

NE basin boundary fault: barrier for groundwater flow

SE basin boundary fault: dual hydraulic character

All fluid overpressures Upper Rotliegend Group

Hydraulic head Upper Rotliegend sandstones

Northern sand limit

Regional southward decreasing heads in the Upper Rotliegend sandstones

Hydraulic head Upper Rotliegend sandstones

Hydraulic head Upper Rotliegend sandstones

NE basin boundary fault; possible barrier for groundwater flow

CO₂ content in natural gas accumulations in Upper Rotliegend sandstones

➢NE basin boundary fault: barrier for gas migration

Southern area A: normally pressured Rijnland Group: decreasing hydraulic heads towards onshore West Netherlands Basin

Possible gas chimney in block Q13

Additional present-day indicators for fault-related flow: anomalous gas compositions and temperatures

Depth map Altena FM

Positive temperature anomaly in Ruhr Valley Graben

•Positive temperature anomalies in AND-6 and BRAK-1

•Igneous intrusions in M-Jurassic AND-2,4

•N-S and EW trending faults cutting through Jurassic units

Possible explanation;Upward fluid flow along faults

Van Balen et al 2002 ,Verweij 2003, Verweij et al. 2005; see also Luyendijk et al 2008 (submitted)

Conclusions

- Rifting is one of the key factors in shaping the present-day permeability framework
- Present-day rift-related fault zones and salt structures:
 - are low permeable to impermeable barriers for lateral fluid migration, respectively;
 - separate pressure and fluid migration systems
 - provide directly or indirectly vertical migration paths for fluids (water,oil,gas)
- Integrated analyses of present-day indicators of fluid migration (e.g. P, T, gas compositions, ..) reveal migration paths for water, oil and gas
- Use all your data in combination with petroleumhydrogeological approaches to identify and understand fluid migration and charging of oil and gas accumulations in the Netherlands

